ترغب بنشر مسار تعليمي؟ اضغط هنا

Shifting Milestones of Natural Sciences: The Ancient Egyptian Discovery of Algols Period Confirmed

45   0   0.0 ( 0 )
 نشر من قبل Lauri Jetsu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Ancient Egyptians wrote Calendars of Lucky and Unlucky Days that assigned astronomically influenced prognoses for each day of the year. The best preserved of these calendars is the Cairo Calendar (hereafter CC) dated to 1244--1163 B.C. We have presented evidence that the 2.85 days period in the lucky prognoses of CC is equal to that of the eclipsing binary Algol during this historical era. We wanted to find out the vocabulary that represents Algol in the mythological texts of CC. Here we show that Algol was represented as Horus and thus signified both divinity and kingship. The texts describing the actions of Horus are consistent with the course of events witnessed by any naked eye observer of Algol. These descriptions support our claim that CC is the oldest preserved historical document of the discovery of a variable star. The period of the Moon, 29.6 days, has also been discovered in CC. We show that the actions of Seth were connected to this period, which also strongly regulated the times described as lucky for Heaven and for Earth. Now, for the first time, periodicity is discovered in the descriptions of the days in CC. Unlike many previous attempts to uncover the reasoning behind the myths of individual days, we discover the actual rules in the appearance and behaviour of deities during the whole year.



قيم البحث

اقرأ أيضاً

The equivalent widths of C II $lambda$ 4267 AA line were measured for the mass-gaining primary stars of the 18 Algol-type binary systems. The comparison of the EWs of the gainers with those of the single standard stars having the same effective tempe rature and luminosity class clearly indicates that they are systematically smaller than those of the standard stars. The primary components of the classical Algols, located in the main-sequence band of the HR diagram, appear to be C poor stars. We estimate $ [N_{C} /N_{tot}] $ relative to the Sun as -1.91 for GT Cep, -1.88 for AU Mon and -1.41 for TU Mon, indicating poorer C abundance. An average differential carbon abundance has been estimated to be -0.82 dex relative to the Sun and -0.54 dex relative to the main-sequence standard stars. This result is taken to be an indication of the transferring material from the evolved less-massive secondary components to the gainers such that the CNO cycle processed material changed the original abundance of the gainers. There appear to be relationships between the EWs of C II $lambda$ 4267 AA line and the rates orbital period increase and mass transfer in some Algols. As the mass transfer rate increases the EW of the C II line decreases, which indicates that accreted material has not been completely mixed yet in the surface layers of the gainers. This result supports the idea of mixing as an efficient process to remove the abundance anomaly built up by accretion. Chemical evolution of the classical Algol-type systems may lead to constrains on the initial masses of the less massive, evolved, mass-losing stars.
We report on the discovery of an eclipsing dwarf nova (DN) inside the peculiar, bilobed nebula Te 11. Modelling of high-speed photometry of the eclipse finds the accreting white dwarf to have a mass 1.18 M$_odot$ and temperature 13 kK. The donor spec tral type of M2.5 results in a distance of 330 pc, colocated with Barnards loop at the edge of the Orion-Eridanus superbubble. The perplexing morphology and observed bow shock of the slowly-expanding nebula may be explained by strong interactions with the dense interstellar medium in this region. We match the DN to the historic nova of 483 CE in Orion and postulate that the nebula is the remnant of this eruption. This connection supports the millennia time scale of the post-nova transition from high to low mass-transfer rates. Te 11 constitutes an important benchmark system for CV and nova studies as the only eclipsing binary out of just three DNe with nova shells.
58 - L. Jetsu 2020
Constant orbital period ephemerides of eclipsing binaries give the computed eclipse epochs (C). These ephemerides based on the old data can not accurately predict the observed future eclipse epochs (O). Predictability can be improved by removing line ar or quadratic trends from the O-C data. Additional companions in an eclipsing binary system cause light-time travel effects that are observed as strictly periodic O-C changes. Recently, Hajdu et al. (2019) estimated that the probability for detecting the periods of two new companions from the O-C data is only 0.00005. We apply the new Discrete Chi-square Method (DCM) to 236 years of O-C data of the eclipsing binary Algol ($beta$ Persei). We detect the tentative signals of at least five companion candidates having periods between 1.863 and 219.0 years. The weakest one of these five signals does not reveal a ``new companion candidate, because its $680.4 pm 0.4$ days signal period differs only $1.4 sigma$ from the well-known $679.85 pm 0.04$ days orbital period of Algol~C. We detect these same signals also from the first 226.2 years of data, and they give an excellent prediction for the last 9.2 years of our data. The orbital planes of Algol~C and the new companion candidates are probably co-planar, because no changes have been observed in Algols eclipses. The 2.867 days orbital period has been constant since it was determined by Sir Goodricke (1783).
Building on previous work, a new search of the SuperWASP archive was carried out to identify eclipsing binary systems near the short-period limit. 143 candidate objects were detected with orbital periods between 16000 and 20000 s, of which 97 are new discoveries. Period changes significant at 1 sigma or more were detected in 74 of these objects, and in 38 the changes were significant at 3 sigma or more. The significant period changes observed followed an approximately normal distribution with a half-width at half-maximum of ~0.1 s/yr. There was no apparent relationship between period length and magnitude or direction of period change. Amongst several interesting individual objects studied, 1SWASP J093010.78+533859.5 is presented as a new doubly eclipsing quadruple system, consisting of a contact binary with a 19674.575 s period and an Algol-type binary with a 112799.109 s period, separated by 66.1 AU, being the sixth known system of this type.
We re-examine the statistical confirmation of small long-period Kepler planet candidates in light of recent improvements in our understanding of the occurrence of systematic false alarms in this regime. Using the final Data Release 25 (DR25) Kepler p lanet candidate catalog statistics, we find that the previously confirmed single planet system Kepler-452b no longer achieves a 99% confidence in the planetary hypothesis and is not considered statistically validated in agreement with the finding of Mullally et al. (2018). For multiple planet systems, we find that the planet prior enhancement for belonging to a multiple planet system is suppressed relative to previous Kepler catalogs, and we identify the multi-planet system member, Kepler-186f, no longer achieves a 99% confidence in the planetary hypothesis. Because of the numerous confounding factors in the data analysis process that leads to the detection and characterization of a signal, it is difficult to determine whether any one planetary candidate achieves a strict criterion for confirmation relative to systematic false alarms. For instance, when taking into account a simplified model of processing variations, the additional single planet systems Kepler-443b, Kepler-441b, Kepler-1633b, Kepler-1178b, and Kepler-1653b have a non-negligible probability of falling below a 99% confidence in the planetary hypothesis. The systematic false alarm hypothesis must be taken into account when employing statistical validation techniques in order to confirm planet candidates that approach the detection threshold of a survey. We encourage those performing transit searches of K2, TESS, and other similar data sets to quantify their systematic false alarms rates. Alternatively, independent photometric detection of the transit signal or radial velocity measurements can eliminate the false alarm hypothesis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا