ﻻ يوجد ملخص باللغة العربية
The formation of polycyclic aromatic hydrocarbons (PAHs) and their methyl derivatives occurs mainly in the dust shells of asymptotic giant branch (AGB) stars. The bands at 3.3 and 3.4 $mu$m, observed in infrared emission spectra of several objects, are attributed C-H vibrational modes in aromatic and aliphatic structures, respectively. In general, the feature at 3.3 $mu$m is more intense than the 3.4 $mu$m. Photoionization and photodissociation processes of toluene, the precursor of methylated PAHs, were studied using synchrotron radiation at soft X-ray energies around the carbon K edge with time-of-flight mass spectrometry. Partial ion yields of a large number of ionic fragments were extracted from single and 2D-spectra, where electron-ion coincidences have revealed the doubly charged parent-molecule and several doubly charged fragments containing seven carbon atoms with considerable abundance. textit{Ab initio} calculations based on density functional theory were performed to elucidate the chemical structure of these stable dicationic species. The survival of the dications subjected to hard inner shell ionization suggests that they could be observed in the interstellar medium, especially in regions where PAHs are detected. The ionization and destruction of toluene induced by X-rays were examined in the T Dra conditions, a carbon-rich AGB star. In this context, a minimum photodissociation radius and the half-life of toluene subjected to the incidence of the soft X-ray flux emitted from a companion white dwarf star were determined.
Carbon monoxide is the most abundant molecule after H$_2$ and is important for chemistry in circumstellar envelopes around late-type stars. The size of the envelope is important when modelling low-J transition lines and deriving mass-loss rates from
We present large scale 9 x 27 (25 pc x 70 pc) far-IR observations of the Sgr B2 complex using the spectrometers on board the Infrared Space Observatory (ISO). The far-IR spectra are dominated by the strong continuum emission of dust and by the fine s
Optical interferometry is a powerful tool to investigate the close environment of AGB stars. With a spatial resolution of a few milli-arcseconds, it is even possible to image directly the surface of angularly large objects. This is of special interes
Carbon monoxide (CO) is the most abundant molecule after molecular hydrogen and is important for the chemistry in circumstellar envelopes around evolved stars. When modelling the strength and shape of molecular lines, the size of the CO envelope is a
Photodissociation is the dominant removal process of molecules in any region exposed to intense ultraviolet (UV) radiation. This includes diffuse and translucent interstellar clouds, dense photon-dominated regions, high velocity shocks, the surface l