ﻻ يوجد ملخص باللغة العربية
We briefly review the effective field theory of massive composite particles, their gauge couplings and characteristic energy scale in the UV-domain of UV-stable fixed point of strong four-fermion coupling, then mainly focus the discussions on the decay channels of composite particles into the final states of the SM gauge bosons, leptons and quarks. We calculate the rates of composite bosons decaying into two gauge bosons $gammagamma$, $gamma Z^0$, $W^+W^-$, $Z^0Z^0$ and give the ratios of decay rates of different channels depending on gauge couplings only. It is shown that a composite fermion decays into an elementary fermion and a composite boson, the latter being an intermediate state decays into two gauge bosons, leading to a peculiar kinematics of final states of a quark (or a lepton) and two gauge bosons. These provide experimental implications of such an effective theory of composite particles beyond the SM. We also present some speculative discussions on the channels of composite fermions decaying into $WW$, $WZ$ and $ZZ$ two boson-tagged jets with quark jets, or to four-quark jets. Moreover, at the same energy scale of composite particles produced in high-energy experiments, composite particles are also produced by high-energy sterile neutrino (dark matter) collisions, their decays lead to excesses of cosmic ray particles in space and signals of SM particles in underground laboratories.
We extend the recently developed strong coupling, dimensionally reduced Polyakov-loop effective theory from finite-temperature pure Yang-Mills to include heavy fermions and nonzero chemical potential by means of a hopping parameter expansion. Numeric
CoDEx is a Mathematica package that calculates the Wilson Coefficients (WCs) corresponding to effective operators up to mass dimension-6. Once the part of the Lagrangian involving single as well as multiple degenerate heavy fields, belonging to some
We have proposed to use an effective theory to describe interactions of an $Nbar N$-system. The effective theory can be constructed in analogy to the existing effective theory for an $NN$-system. In this work we study the next-to-leading order correc
The Higgs sector in neutral naturalness models provides a portal to the hidden sectors, and thus measurements of Higgs couplings at current and future colliders play a central role in constraining the parameter space of the model. We investigate a cl
We compute the helicity-dependent strange quark distribution in the proton in the framework of chiral effective theory. Starting from the most general chiral SU(3) Lagrangian that respects Lorentz and gauge invariance, we derive the complete set of h