ﻻ يوجد ملخص باللغة العربية
We used femtosecond optical pump-probe spectroscopy to study the photoinduced change in reflectivity of thin films of the electron-doped cuprate La$_{2-x}$Ce$_x$CuO$_4$ (LCCO) with dopings of x$=$0.08 (underdoped) and x$=$0.11 (optimally doped). Above T$_c$, we observe fluence-dependent relaxation rates which onset at a similar temperature that transport measurements first see signatures of antiferromagnetic correlations. Upon suppressing superconductivity with a magnetic field, it is found that the fluence and temperature dependence of relaxation rates is consistent with bimolecular recombination of electrons and holes across a gap (2$Delta_{AF}$) originating from antiferromagnetic correlations which comprise the pseudogap in electron-doped cuprates. This can be used to learn about coupling between electrons and high-energy ($omega>2Delta_{AF}$) excitations in these compounds and set limits on the timescales on which antiferromagnetic correlations are static.
We performed systematic angle-resolved photoemission spectroscopy measurements $in$-$situ$ on $T$-${rm La}_{2-x}{rm Ce}_xrm {CuO}_{4pmdelta}$ (LCCO) thin films over the extended doping range prepared by the refined ozone/vacuum annealing method. Elec
Electron correlations play a dominant role in the charge dynamics of the cuprates. We use resonant inelastic x-ray scattering (RIXS) to track the doping dependence of the collective charge excitations in electron doped La$_{2-x}$Ce$_{x}$CuO$_{4}$(LCC
We analyze optical spectroscopy data of the electron-doped superconductor (Pr$_{2-x}$Ce$_x$)CuO$_4$ (PCCO) to investigate the coupling of the charge carriers to bosonic modes. The method of analysis is the inversion of the optical scattering rate $ta
High-transition-temperature (high-Tc) superconductivity develops near antiferromagnetic phases, and it is possible that magnetic excitations contribute to the superconducting pairing mechanism. To assess the role of antiferromagnetism, it is essentia
Inelastic neutron scattering for Nd$_{2-x}$Ce$_x$CuO$_{4+delta}$ near optimal doping ($x approx 0.155$, $T_{c} = 25 mathrm{K}$) reveals that the dynamic magnetic susceptibility at the antiferromagnetic zone center exhibits two characteristic energies