ﻻ يوجد ملخص باللغة العربية
Background: Multinucleon transfer (MNT) and quasifission (QF) processes are dominant processes in low-energy collisions of two heavy nuclei. They are expected to be useful to produce neutron-rich unstable nuclei. Nuclear dynamics leading to these processes depends sensitively on nuclear properties such as deformation and shell structure. Purpose: We elucidate reaction mechanisms of MNT and QF processes involving heavy deformed nuclei, making detailed comparisons between microscopic time-dependent Hartree-Fock (TDHF) calculations and measurements for the $^{64}$Ni+$^{238}$U reaction. Methods: Three-dimensional Skyrme-TDHF calculations are performed. Particle-number projection method is used to evaluate MNT cross sections from the TDHF wave function after collision. Results: Fragment masses, total kinetic energy (TKE), scattering angle, contact time, and MNT cross sections are investigated for the $^{64}$Ni+$^{238}$U reaction. They show reasonable agreements with measurements. At small impact parameters, collision dynamics depends sensitively on the orientation of deformed $^{238}$U. In tip (side) collisions, we find a larger (smaller) TKE and a shorter (longer) contact time. In tip collisions, we find a strong influence of quantum shells around $^{208}$Pb. Conclusions: It is confirmed that the TDHF calculations reasonably describe both MNT and QF processes in the $^{64}$Ni+$^{238}$U reaction. Analyses of this system indicates the significance of the nuclear structure effects such as deformation and quantum shells in nuclear reaction dynamics at low energies.
Time-dependent Hartree-Fock (TDHF) theory has achieved a remarkable success in describing and understanding nuclear many-body dynamics from nucleons degrees of freedom. We here report our investigation of multinucleon transfer (MNT) processes employi
Background: The time-dependent Hartree-Fock (TDHF) theory has been successful in describing low-energy heavy ion collisions. Recently, we have shown that multinucleon transfer processes can be reasonably described in the TDHF theory combined with the
Background: The Density-constraint Time-dependent Hartree-Fock method is currently the tool of choice to predict fusion cross-sections. However, it does not include pairing correlations, which have been found recently to play an important role. Purpo
We present a microscopic calculation of multi-nucleon transfer reactions employing the time-dependent Hartree-Fock (TDHF) theory. In our previous publication [Phys. Rev. C 88, 014614 (2013)], we reported our analysis for the multi-nucleon transfer pr
The reaction mechanism of deep-inelastic multinucleon transfer processes in the $^{16}$O+$^{27}$Al reaction at an incident $^{16}$O energy ($E_{rm lab}=134$ MeV) substantially above the Coulomb barrier has been studied both experimentally and theoret