ترغب بنشر مسار تعليمي؟ اضغط هنا

Dry Merger Rate and Post-merger Fraction in the Coma Cluster Core

71   0   0.0 ( 0 )
 نشر من قبل Juan Pablo Cordero Mr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We evaluate the dry merger activity in the Coma cluster, using a spectroscopically complete sample of 70 red-sequence (RS) galaxies, most of which (~75%) are located within 0.2R200 (~0.5 Mpc) from the cluster center, with data from the Coma Treasury Survey obtained with the Hubble Space Telescope. The fraction of close galaxy pairs in the sample is the proxy employed for the estimation of the merger activity. We identify 5 pairs and 1 triplet, enclosing a total of 13 galaxies, based on limits on projected separation and line-of-sight velocity difference. Of these systems, none show signs of ongoing interaction, and therefore we do not find any true mergers in our sample. This negative result sets a 1{sigma} upper limit of 1.5% per Gyr for the major dry merger rate, consistent with the low rates expected in present-day clusters. Detailed examination of the images of all the RS galaxies in the sample reveals only one with low surface brightness features identifiable as the remnant of a past merger or interaction, implying a post-merger fraction below 2%.



قيم البحث

اقرأ أيضاً

We study a merger of the NGC 4839 group with the Coma cluster using X-ray observations from the XMM-Newton and Chandra telescopes. X-ray data show two prominent features: (i) a long (~600 kpc in projection) and bent tail of cool gas trailing (towards south-west) the optical center of NGC 4839, and ii) a sheath region of enhanced X-ray surface brightness enveloping the group, which is due to hotter gas. While at first glance the X-ray images suggest that we are witnessing the first infall of NGC 4839 into the Coma cluster core, we argue that a post-merger scenario provides a better explanation of the observed features and illustrate this with a series of numerical simulations. In this scenario, the tail is formed when the group, initially moving to the south-west, reverses its radial velocity after crossing the apocenter, the ram pressure ceases and the ram-pressure-displaced gas falls back toward the center of the group and overshoots it. Shortly after the apocenter passage, the optical galaxy, dark matter and gaseous core move in a north-east direction, while the displaced gas continues moving to the south-west. The sheath is explained as being due to interaction of the re-infalling group with its own tail of stripped gas mixed with the Coma gas. In this scenario, the shock, driven by the group before reaching the apocenter, has already detached from the group and would be located close to the famous relic to the south-west of the Coma cluster.
106 - B. W. Holwerda 2011
The morphology of the atomic hydrogen (HI) disk of a spiral galaxy is the first component to be disturbed by a gravitational interaction such as a merger between two galaxies. We use a simple parametrisation of the morphology of HI column density map s of Westerbork HI Spiral Project (WHISP) to select those galaxies that are likely undergoing a significant interaction. Merging galaxies occupy a particular part of parameter space defined by Asymmetry (A), the relative contribution of the 20% brightest pixels to the second order moment of the column density map (M20) and the distribution of the second order moment over all the pixels (GM). Based on their HI morphology, we find that 13% of the WHISP galaxies are in an interaction (Concentration-M20) and only 7% based on close companions in the data-cube. This apparent discrepancy can be attributed to the difference in visibility time scales: mergers are identifiable as close pairs for 0.5 Gyr but ~1 Gyr by their disturbed HI morphology. Expressed as volume merger rates, the two estimates agree very well: 7 and 6.8 x 10^-3 mergers Gyr^-1 Mpc^-3 for paired and morphologically disturbed HI disks respectively. The consistency of our merger fractions to those published for bigger surveys such as the Sloan Digital Sky Survey, shows that HI morphology can be a very viable way to identify mergers in a large HI survey. The relatively high value for the volume merger rate may be a bias in the selection or WHISP volume. The expected boon in high-resolution HI data by the planned MeerKAT, ASKAP and WSRT/APERTIF radio observatories will reveal the importance of mergers in the local Universe and, with the advent of SKA, over cosmic times.
202 - R. De Propris 2010
We measure the fraction of Luminous Red Galaxies (LRGs) in dynamically close pairs (with projected separation less than 20 $h^{-1}$ kpc and velocity difference less than 500 km s$^{-1}$) to estimate the dry merger rate for galaxies with $-23 < M(r)_{ k+e,z=0.2} +5 log h < -21.5$ and $0.45 < z < 0.65$ in the 2dF-SDSS LRG and QSO (2SLAQ) redshift survey. For galaxies with a luminosity ratio of $1:4$ or greater we determine a $5sigma$ upper limit to the merger fraction of 1.0% and a merger rate of $< 0.8 times 10^{-5}$ Mpc$^{-3}$ Gyr$^{-1}$ (assuming that all pairs merge on the shortest possible timescale set by dynamical friction). This is significantly smaller than predicted by theoretical models and suggests that major dry mergers do not contribute to the formation of the red sequence at $z < 0.7$.
The Coma cluster is the richest and most compact of the nearby clusters, yet there is growing evidence that its formation is still on-going. With a new multi-slit imaging spectroscopy technique pioneered at the 8.2 m Subaru telescope and FOCAS, we ha ve detected and measured the line-of-sight velocities of 37 intracluster planetary nebulae associated with the diffuse stellar population of stars in the Coma cluster core, at 100 Mpc distance. We detect clear velocity substructures within a 6 arcmin diameter field. A substructure is present at ~5000 km/s, probably from in-fall of a galaxy group, while the main intracluster stellar component is centered around ~6500 km/s, ~700 km/s offset from the nearby cD galaxy NGC 4874. The kinematics and morphology of the intracluster stars show that the cluster core is in a highly dynamically evolving state. In combination with galaxy redshift and X-ray data this argues strongly that the cluster is currently in the midst of a subcluster merger, where the NGC 4874 subcluster core may still be self-bound, while the NGC 4889 subcluster core has probably dissolved. The NGC 4889 subcluster is likely to have fallen into Coma from the eastern A2199 filament, in a direction nearly in the plane of the sky, meeting the NGC 4874 subcluster arriving from the west. The two inner subcluster cores are presently beyond their first and second close passage, during which the elongated distribution of diffuse light has been created. We predict the kinematic signature expected in this scenario, and argue that the extended western X-ray arc recently discovered traces the arc shock generated by the collision between the two subcluster gas halos. Any preexisting cooling core region would have been heated by the subcluster collision.
Measurements of the neutral hydrogen gas content of a sample of 93 post-merger galaxies are presented, from a combination of matches to the ALFALFA.40 data release and new Arecibo observations. By imposing completeness thresholds identical to that of the ALFALFA survey, and by compiling a mass-, redshift- and environment-matched control sample from the public ALFALFA.40 data release, we calculate gas fraction offsets (Delta f_gas) for the post-mergers, relative to the control sample. We find that the post-mergers have HI gas fractions that are consistent with undisturbed galaxies. However, due to the relative gas richness of the ALFALFA.40 sample, from which we draw our control sample, our measurements of gas fraction enhancements are likely to be conservative lower limits. Combined with comparable gas fraction measurements by Fertig et al. in a sample of galaxy pairs, who also determine gas fraction offsets consistent with zero, we conclude that there is no evidence for significant neutral gas consumption throughout the merger sequence. From a suite of 75 binary merger simulations we confirm that star formation is expected to decrease the post-merger gas fraction by only 0.06 dex, even several Gyr after the merger. Moreover, in addition to the lack of evidence for gas consumption from gas fraction offsets, the observed HI detection fraction in the complete sample of post-mergers is twice as high as the controls, which suggests that the post-merger gas fractions may actually be enhanced. We demonstrate that a gas fraction enhancement in post-mergers, relative to a stellar mass-matched control sample, would indeed be the natural result of merging randomly drawn pairs from a parent population which exhibits a declining gas fraction with increasing stellar mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا