ﻻ يوجد ملخص باللغة العربية
We report 100% duty cycle generation of sub-MHz single photon pairs at the Rubidium D$_1$ line using cavity-enhanced spontaneous parametric downconversion. The temporal intensity crosscorrelation function exhibits a bandwidth of $666 pm 16$ kHz for the single photons, an order of magnitude below the natural linewidth of the target transition. A half-wave plate inside our cavity helps to achieve triple resonance between pump, signal and idler photon, reducing the bandwidth and simplifying the locking scheme. Additionally, stabilisation of the cavity to the pump frequency enables the 100% duty cycle. These photons are well-suited for storage in quantum memory schemes with sub-natural linewidths, such as gradient echo memories.
We studied the optical properties of a resonantly excited trivalent Er ensemble in Si accessed via in situ single photon detection. A novel approach which avoids nanofabrication on the sample is introduced, resulting in a highly efficient detection o
A promising result from optical quantum metrology is the ability to achieve sub-shot-noise performance in transmission or absorption measurements. This is due to the significantly lower uncertainty in light intensity of quantum beams with respect to
Owing to their unsurpassed photostability, defects in solids may be ideal candidates for single photon sources. Here we report on generation of single photons by optical excitation of a yet unexplored defect in diamond, the nickel-nitrogen complex (N
We propose a technique capable of imaging a distinct physical object with sub-Rayleigh resolution in an ordinary far-field imaging setup using single-photon sources and linear optical tools only. We exemplify our method for the case of a rectangular
We studied intensity fluctuations of a single photon source relying on the pulsed excitation of the fluorescence of a single molecule at room temperature. We directly measured the Mandel parameter Q(T) over 4 orders of magnitude of observation timesc