ترغب بنشر مسار تعليمي؟ اضغط هنا

A note on the periodic methanol masers in G9.62+0.20E

57   0   0.0 ( 0 )
 نشر من قبل Johan van der Walt
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A number of mechanisms to understand the periodic class II methanol masers associated with some high-mass star forming regions have been proposed in the past. Two recent proposals, ie. by Parfenov &Sobolev (2014) and Sanna et al. (2015) have been presented in order to explain the periodic masers in sources with light curves similar to the methanol masers in G9.62+0.20E. We evaluate to what extent the proposals and models presented by these authors can explain the light curve of the methanol masers in G9.62+0.20E. It is argued that neither of the proposed mechanisms can reproduce the light curves of the methanol masers in G9.62+0.20E.

قيم البحث

اقرأ أيضاً

We present the light curves of the 6.7 and 12.2 GHz methanol masers in the star forming region G9.62+0.20E for a time span of more than 2600 days. The earlier reported period of 244 days is confirmed. The results of monitoring the 107 GHz methanol ma ser for two flares are also presented. The results show that flaring occurs in all three masing transitions. It is shown that the average flare profiles of the three masing transitions are similar. The 12.2 GHz masers are the most variable of the three masers with the largest relative amplitude having a value of 2.4. The flux densities for the different masing transitions are found to return to the same level during the low phase of the masers, suggesting that the source of the periodic flaring is situated outside the masing region, and that the physical conditions in the masing region are relatively stable. On the basis of the shape of the light curve we excluded stellar pulsations as the underlying mechanism for the periodicity. It is argued that a colliding wind binary can account for the observed periodicity and provide a mechanism to qualitatively explain periodicity in the seed photon flux and/or the pumping radiation field. It is also argued that the dust cooling time is too short to explain the decay time of about 100 days of the maser flare. A further analysis has shown that for the intervals from days 48 to 66 and from days 67 to 135 the decay of the maser light curve can be interpreted as due to the recombination of a thermal hydrogen plasma with densities of approximately $1.6 times 10^6 mathrm{cm^{-3}}$ and $6.0 times 10^5 mathrm{cm^{-3}}$ respectively.
We present the results of a monitoring campaign using the KAT-7 and HartRAO 26m telescopes, of hydroxyl, methanol and water vapour masers associated with the high-mass star forming region G9.62+0.20E. Periodic flaring of the main line hydroxyl masers were found, similar to that seen in the 6.7 and 12.2 GHz methanol masers. The 1667 MHz flares are characterized by a rapid decrease in flux density which is coincident with the start of the 12.2 GHz methanol maser flare. The decrease in the OH maser flux density is followed by a slow increase till a maximum is reached after which the maser decays to its pre-flare level. A possible interpretation of the rapid decrease in the maser flux density is presented. Considering the projected separation between the periodic methanol and OH masers, we conclude that the periodic 12.2 methanol masing region is located about 1600 AU deeper into the molecular envelope compared to the location of the periodic OH masers. A single water maser flare was also detected which seems not to be associated with the same event that gives rise to the periodic methanol and OH maser flares.
78 - P.D. Stack 2011
We have used the University of Tasmania Mt Pleasant 26m radio telescope to investigate the polarisation characteristics of a sample of strong 6.7 GHz methanol masers, the first spectral line polarisation observations to be undertaken with this instru ment. As part of this process we have developed a new technique for calibrating linear polarisation spectral line observations. This calibration method gives results consistent with more traditional techniques, but requires much less observing time on the telescope. We have made the first polarisation measurements of a number of 6.7 GHz methanol masers and find linear polarisation at levels of a few - 10% in most of the sources we observed, consistent with previous results. We also investigated the circular polarisation produced by Zeeman splitting in the 6.7 GHz methanol maser G9.62+0.20 to get an estimate of the line of sight magnetic field strength of 35+/-7 mG.
122 - K.L.J. Rygl 2009
Emission from the 6.7 GHz methanol maser transition is very strong, is relatively stable, has small internal motions, and is observed toward numerous massive star-forming regions in the Galaxy. Our goal is to perform high-precision astrometry using t his maser transition to obtain accurate distances to their host regions. Eight strong masers were observed during five epochs of VLBI observations with the European VLBI Network between 2006 June, and 2008 March. We report trigonometric parallaxes for five star-forming regions, with accuracies as good as $sim22 mathrm{mu}$as. Distances to these sources are $2.57^{+0.34}_{-0.27}$ kpc for ON 1, $0.776^{+0.104}_{-0.083}$ kpc for L 1206, $0.929^{+0.034}_{-0.033}$ kpc for L 1287, $2.38^{+0.13}_{-0.12}$ kpc for NGC 281-W, and $1.59^{+0.07}_{-0.06}$ kpc for S 255. The distances and proper motions yield the full space motions of the star-forming regions hosting the masers, and we find that these regions lag circular rotation on average by $sim$17 km s$^{-1}$, a value comparable to those found recently by similar studies.
75 - J. S. Urquhart 2013
Using the 870-$mu$m APEX Telescope Large Area Survey of the Galaxy (ATLASGAL), we have identified 577 submillimetre continuum sources with masers from the methanol multibeam (MMB) survey in the region $280degr < ell < 20degr$; $|,b,| < 1.5degr$. 94,p er,cent of methanol masers in the region are associated with sub-millimetre dust emission. We estimate masses for ~450 maser-associated sources and find that methanol masers are preferentially associated with massive clumps. These clumps are centrally condensed, with envelope structures that appear to be scale-free, the mean maser position being offset from the peak column density by 0.0 pm 4. Assuming a Kroupa initial mass function and a star-formation efficiency of ~30,per,cent, we find that over two thirds of the clumps are likely to form clusters with masses >20,msun. Furthermore, almost all clumps satisfy the empirical mass-size criterion for massive star formation. Bolometric luminosities taken from the literature for ~100 clumps range between ~100 and 10$^6$,lsun. This confirms the link between methanol masers and massive young stars for 90,per,cent of our sample. The Galactic distribution of sources suggests that the star-formation efficiency is significantly reduced in the Galactic-centre region, compared to the rest of the survey area, where it is broadly constant, and shows a significant drop in the massive star-formation rate density in the outer Galaxy. We find no enhancement in source counts towards the southern Scutum-Centaurus arm tangent at $ell ~ 315degr$, which suggests that this arm is not actively forming stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا