ﻻ يوجد ملخص باللغة العربية
We present a self-certifying compiler for the COGENT systems language. COGENT is a restricted, polymorphic, higher-order, and purely functional language with linear types and without the need for a trusted runtime or garbage collector. It compiles to efficient C code that is designed to interoperate with existing C functions. The language is suited for layered systems code with minimal sharing such as file systems or network protocol control code. For a well-typed COGENT program, the compiler produces C code, a high-level shallow embedding of its semantics in Isabelle/HOL, and a proof that the C code correctly implements this embedding. The aim is for proof engineers to reason about the full semantics of real-world systems code productively and equationally, while retaining the interoperability and leanness of C. We describe the formal verification stages of the compiler, which include automated formal refinement calculi, a switch from imperative update semantics to functional value semantics formally justified by the linear type system, and a number of standard compiler phases such as type checking and monomorphisation. The compiler certificate is a series of language-level meta proofs and per-program translation validation phases, combined into one coherent top-level theorem in Isabelle/HOL.
We argue that the implementation and verification of compilers for functional programming languages are greatly simplified by employing a higher-order representation of syntax known as Higher-Order Abstract Syntax or HOAS. The underlying idea of HOAS
User defined recursive types are a fundamental feature of modern functional programming languages like Haskell, Clean, and the ML family of languages. Properties of programs defined by recursion on the structure of recursive types are generally prove
While modern software development heavily uses versioned packages, programming languages rarely support the concept
We present FunTAL, the first multi-language system to formalize safe interoperability between a high-level functional language and low-level assembly code while supporting compositional reasoning about the mix. A central challenge in developing such
We investigate program equivalence for linear higher-order(sequential) languages endowed with primitives for computational effects. More specifically, we study operationally-based notions of program equivalence for a linear $lambda$-calculus with exp