ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal-size clique transversals in chordal graphs

90   0   0.0 ( 0 )
 نشر من قبل Daniel Kral
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The following question was raised by Tuza in 1990 and Erdos et al. in 1992: if every edge of an n-vertex chordal graph G is contained in a clique of size at least four, does G have a clique transversal, i.e., a set of vertices meeting all non-trivial maximal cliques, of size at most n/4? We prove that every such graph G has a clique transversal of size at most 2(n-1)/7 if n>=5, which is the best possible bound.



قيم البحث

اقرأ أيضاً

215 - Hsin-Hao Lai , Ko-Wei Lih 2012
Suppose that D is an acyclic orientation of a graph G. An arc of D is called dependent if its reversal creates a directed cycle. Let m and M denote the minimum and the maximum of the number of dependent arcs over all acyclic orientations of G. We cal l G fully orientable if G has an acyclic orientation with exactly d dependent arcs for every d satisfying m <= d <= M. A graph G is called chordal if every cycle in G of length at least four has a chord. We show that all chordal graphs are fully orientable.
We prove that for any $tge 3$ there exist constants $c>0$ and $n_0$ such that any $d$-regular $n$-vertex graph $G$ with $tmid ngeq n_0$ and second largest eigenvalue in absolute value $lambda$ satisfying $lambdale c d^{t}/n^{t-1}$ contains a $K_t$-fa ctor, that is, vertex-disjoint copies of $K_t$ covering every vertex of $G$.
Let $G$ be a graph whose edges are coloured with $k$ colours, and $mathcal H=(H_1,dots , H_k)$ be a $k$-tuple of graphs. A monochromatic $mathcal H$-decomposition of $G$ is a partition of the edge set of $G$ such that each part is either a single edg e or forms a monochromatic copy of $H_i$ in colour $i$, for some $1le ile k$. Let $phi_{k}(n,mathcal H)$ be the smallest number $phi$, such that, for every order-$n$ graph and every $k$-edge-colouring, there is a monochromatic $mathcal H$-decomposition with at most $phi$ elements. Extending the previous results of Liu and Sousa [Monochromatic $K_r$-decompositions of graphs, Journal of Graph Theory}, 76:89--100, 2014], we solve this problem when each graph in $mathcal H$ is a clique and $nge n_0(mathcal H)$ is sufficiently large.
405 - David R. Wood 2011
A clique minor in a graph G can be thought of as a set of connected subgraphs in G that are pairwise disjoint and pairwise adjacent. The Hadwiger number h(G) is the maximum cardinality of a clique minor in G. This paper studies clique minors in the C artesian product G*H. Our main result is a rough structural characterisation theorem for Cartesian products with bounded Hadwiger number. It implies that if the product of two sufficiently large graphs has bounded Hadwiger number then it is one of the following graphs: - a planar grid with a vortex of bounded width in the outerface, - a cylindrical grid with a vortex of bounded width in each of the two `big faces, or - a toroidal grid. Motivation for studying the Hadwiger number of a graph includes Hadwigers Conjecture, which states that the chromatic number chi(G) <= h(G). It is open whether Hadwigers Conjecture holds for every Cartesian product. We prove that if |V(H)|-1 >= chi(G) >= chi(H) then Hadwigers Conjecture holds for G*H. On the other hand, we prove that Hadwigers Conjecture holds for all Cartesian products if and only if it holds for all G * K_2. We then show that h(G * K_2) is tied to the treewidth of G. We also develop connections with pseudoachromatic colourings and connected dominating sets that imply near-tight bounds on the Hadwiger number of grid graphs (Cartesian products of paths) and Hamming graphs (Cartesian products of cliques).
93 - Xiaoyu He , Jiaxi Nie , Sam Spiro 2021
Nielsen proved that the maximum number of maximal independent sets (MISs) of size $k$ in an $n$-vertex graph is asymptotic to $(n/k)^k$, with the extremal construction a disjoint union of $k$ cliques with sizes as close to $n/k$ as possible. In this paper we study how many MISs of size $k$ an $n$-vertex graph $G$ can have if $G$ does not contain a clique $K_t$. We prove for all fixed $k$ and $t$ that there exist such graphs with $n^{lfloorfrac{(t-2)k}{t-1}rfloor-o(1)}$ MISs of size $k$ by utilizing recent work of Gowers and B. Janzer on a generalization of the Ruzsa-Szemeredi problem. We prove that this bound is essentially best possible for triangle-free graphs when $kle 4$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا