ترغب بنشر مسار تعليمي؟ اضغط هنا

Active Dirac Neutrinos via $SU(2)_L$ Doublets in 5d

53   0   0.0 ( 0 )
 نشر من قبل Kenji Nishiwaki
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new mechanism to generate minuscule active neutrino masses in a five-dimensional~(5d) spacetime of an interval without introducing $SU(2)_L$ singlet neutrinos. Under asymmetric boundary conditions on the two end points, a bulk mass for a 5d fermion allows a Dirac particle with a tiny mass eigenvalue. Implementing this mechanism, which provides us a new tool for building neutrino mass models, to the standard model gauge structure is possible when all the gauge bosons and the Higgs boson are localized on one of the branes.



قيم البحث

اقرأ أيضاً

We discuss proton decay in a recently proposed model of supersymmetric hybrid inflation based on the gauge symmetry $SU(4)_c times SU(2)_L times SU(2)_R$. A $U(1), R$ symmetry plays an essential role in realizing inflation as well as in eliminating s ome undesirable baryon number violating operators. Proton decay is primarily mediated by a variety of color triplets from chiral superfields, and it lies in the observable range for a range of intermediate scale masses for the triplets. The decay modes include $p rightarrow e^{+}(mu^+) + pi^0$, $p rightarrow bar{ u} + pi^{+}$, $p rightarrow K^0 + e^+(mu^{+})$, and $p rightarrow K^+ + bar{ u}$, with a lifetime estimate of order $10^{34}-10^{36}$ yrs and accessible at Hyper-Kamiokande and future upgrades. The unification at the Grand Unified Theory (GUT) scale $M_{rm GUT}$ ($sim 10^{16}$ GeV) of the Minimal Supersymmetric Standard Model (MSSM) gauge couplings is briefly discussed.
We consider extension of the standard model $SU(2)_l times SU(2)_h times U(1)$ where the first two families of quarks and leptons transform according to the $SU(2)_l$ group and the third family according to the $SU(2)_h$ group. In this approach, the largeness of top-quark mass is associated with the large vacuum expectation value of the corresponding Higgs field. The model predicts almost degenerate heavy $W$ and $Z$ bosons with non-universal couplings, and extra Higgs bosons. We present in detail the symmetry breaking mechanism, and carry out the subsequent phenomenology of the gauge sector. We compare the model with electroweak precision data, and conclude that the extra gauge bosons and the Higgs bosons whose masses lie in the TeV range, can be discovered at the LHC.
We explore the sparticle mass spectra including LSP dark matter within the framework of supersymmetric $SU(4)_c times SU(2)_L times SU(2)_R$ (422) models, taking into account the constraints from extensive LHC and cold dark matter searches. The soft supersymmetry-breaking parameters at $M_{GUT}$ can be non-universal, but consistent with the 422 symmetry. We identify a variety of coannihilation scenarios compatible with LSP dark matter, and study the implications for future supersymmetry searches and the ongoing muon g-2 experiment.
117 - Ernest Ma 2021
A known mechanism for obtaining naturally light Dirac neutrinos is implemented in the context of $SU(6) to SU(5) times U(1)_N$.
A new vector dark matter (DM) scenario in the context of the gauge-Higgs unification (GHU) is proposed. The DM particle is identified with an electric-charge neutral component in an $SU(2)_L$ doublet vector field with the same quantum number as the S tandard Model Higgs doublet. Since such an $SU(2)_L$ doublet vector field is incorporated in any models of the GHU scenario, it is always a primary and model-independent candidate for the DM in the scenario. The observed relic density is reproduced through a DM pair annihilations into the weak gauge bosons with a TeV-scale DM mass, which is nothing but the compactification scale of extra-dimensions. Due to the higher-dimensional gauge structure of the GHU scenario, a pair of the DM particles has no direct coupling with a single $Z$-boson/Higgs boson, so that the DM particle evades the severe constraint from the current direct DM search experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا