ﻻ يوجد ملخص باللغة العربية
We analyze the one dimensional scattering produced by all variations of the Poschl-Teller potential, i.e., potential well, low and high barriers. We show that the Poschl-Teller well and low barrier potentials have no resonance poles, but an infinite number of simple poles along the imaginary axis corresponding to bound and antibound states. A quite different situation arises on the Poschl-Teller high barrier potential, which shows an infinite number of resonance poles and no other singularities. We have obtained the explicit form of their associated Gamow states. We have also constructed ladder operators connecting wave functions for bound and antibound states as well as for resonance states. Finally, using wave functions of Gamow and antibound states in the factorization method, we construct some examples of supersymmetric partners of the Poschl-Teller Hamiltonian.
Pairs of SUSY partner Hamiltonians are studied which are interrelated by usual (linear) or polynomial supersymmetry. Assuming the model of one of the Hamiltonians as exactly solvable with known propagator, expressions for propagators of partner model
In recent years, many natural Hamiltonian systems, classical and quantum, with constants of motion of high degree, or symmetry operators of high order, have been found and studied. Most of these Hamiltonians, in the classical case, can be included in
We examine time dependent Schru007fodinger equation with oscillating boundary condition. More specifically, we use separation of variable technique to construct time dependent rationally extended Pu007foschl-Teller potential (whose solutions are give
The fast computation of the Gauss hypergeometric function 2F1 with all its parameters complex is a difficult task. Although the 2F1 function verifies numerous analytical properties involving power series expansions whose implementation is apparently
We obtain the quantized momentum solutions, $mathcal{P}_{n}$, of the Feinberg-Horodecki equation. We study the space-like coherent states for the space-like counterpart of the Schrodinger equation with trigonometric Poschl-Teller potential which is c