ﻻ يوجد ملخص باللغة العربية
We report the observation of colossal positive magnetoresistance (MR) in single crystalline, high mobility TaAs2 semimetal. The excellent fit of MR by a single quadratic function of the magnetic field B over a wide temperature range (T = 2-300 K) suggests the semiclassical nature of the MR. The measurements of Hall effect and Shubnikov-de Haas oscillations, as well as band structure calculations suggest that the giant MR originates from the nearly perfectly compensated electrons and holes in TaAs2. The quadratic MR can even exceed 1,200,000% at B = 9 T and T = 2 K, which is one of the largest values among those of all known semi-metallic compounds including the very recently discovered WTe2 and NbSb2. The giant positive magnetoresistance in TaAs2, which not only has a fundamentally different origin from the negative colossal MR observed in magnetic systems, but also provides a nice complemental system that will be beneficial for applications in magnetoelectronic devices
Materials with high carrier mobility showing large magnetoresistance (MR) have recently received much attention because of potential applications in future high-performance magneto-electric devices. Here, we report on the discovery of an electron-hol
Three dimensional (3D) Dirac semimetals are 3D analogue of graphene, which display Dirac points with linear dispersion in k-space, stabilized by crystal symmetry. Cd3As2 and Na3Bi were predicted to be 3D Dirac semimetals and were subsequently demonst
We report the electronic properties of single crystals of candidate nodal-line semimetal CaAgP. The transport properties of CaAgP are understood within the framework of a hole-doped nodal-line semimetal. In contrast, Pd-doped CaAgP shows a drastic in
Magnetic topological semimetals, the latest member of topological quantum materials, are attracting extensive attention as they may lead to topologically-driven spintronics. Currently, magnetotransport investigations on these materials are focused on
Multiple mechanisms for extremely large magnetoresistance (XMR) found in many topologically nontrivial/trivial semimetals have been theoretically proposed, but experimentally it is unclear which mechanism is responsible in a particular sample. In thi