ترغب بنشر مسار تعليمي؟ اضغط هنا

Real-Time Supernova Neutrino Burst Monitor at Super-Kamiokande

450   0   0.0 ( 0 )
 نشر من قبل Hirokazu Ishino
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a real-time supernova neutrino burst monitor at Super-Kamiokande (SK). Detecting supernova explosions by neutrinos in real time is crucial for giving a clear picture of the explosion mechanism. Since the neutrinos are expected to come earlier than light, a fast broadcasting of the detection may give astronomers a chance to make electromagnetic radiation observations of the explosions right at the onset. The role of the monitor includes a fast announcement of the neutrino burst detection to the world and a determination of the supernova direction. We present the online neutrino burst detection system and studies of the direction determination accuracy based on simulations at SK.



قيم البحث

اقرأ أيضاً

A new Super-Kamiokande (SK) search for Supernova Relic Neutrinos (SRNs) was conducted using 2853 live days of data. Sensitivity is now greatly improved compared to the 2003 SK result, which placed a flux limit near many theoretical predictions. This more detailed analysis includes a variety of improvements such as increased efficiency, a lower energy threshold, and an expanded data set. New combined upper limits on SRN flux are between 2.8 and 3.0 nu_e cm^-2 s^-1 > 16 MeV total positron energy (17.3 MeV E_nu).
Supernova neutrinos are crucially important to probe the final phases of massive star evolution. As is well known from observations of SN1987A, neutrinos provide information on the physical conditions responsible for neutron star formation and on the supernova explosion mechanism. However, there is still no complete understanding of the long-term evolution of neutrino emission in supernova explosions, although there are a number of modern simulations of neutrino radiation hydrodynamics, which study neutrino emission at times less than one second after the bounce. In the present work we systematically calculate the number of neutrinos that can be observed in Super-Kamiokande over periods longer than ten seconds using the database of Nakazato et al. (2013) anticipating that neutrinos from a Galactic supernova can be detected for several tens of seconds. We find that for a supernova at a distance of 10 kpc, neutrinos remain observable for longer than 30 s for a low-mass neutron star ($1.20M_odot$ gravitational mass) and even longer than 100 s for a high-mass neutron star ($2.05M_odot$). These scenarios are much longer than the observations of SN1987A and longer than the duration of existing numerical simulations. We propose a new analysis method based on the cumulative neutrino event distribution as a function of reverse time from the last observed event, as a useful probe of the neutron star mass. Our result demonstrates the importance of complete modeling of neutrino light curves in order to extract physical quantities essential for understanding supernova explosion mechanisms, such as the mass and radius of the resulting neutron star.
The result of a search for neutrino bursts from supernova explosions using the Super-Kamiokande detector is reported. Super-Kamiokande is sensitive to core-collapse supernova explosions via observation of their neutrino emissions. The expected number of events comprising such a burst is ~10^4 and the average energy of the neutrinos is in few tens of MeV range in the case of a core-collapse supernova explosion at the typical distance in our galaxy (10 kiloparsecs); this large signal means that the detection efficiency anywhere within our galaxy and well past the Magellanic Clouds is 100%. We examined a data set which was taken from May, 1996 to July, 2001 and from December, 2002 to October, 2005 corresponding to 2589.2 live days. However, there is no evidence of such a supernova explosion during the data-taking period. The 90% C.L. upper limit on the rate of core-collapse supernova explosions out to distances of 100 kiloparsecs is found to be 0.32 SN/year.
The late-time evolution of the neutrino event rate from supernovae is evaluated for Super-Kamiokande using simulated results of proto-neutron star (PNS) cooling. In the present work we extend the result of Suwa et al. (2019) [arXiv:1904.09996], which studied the dependence on the PNS mass, but focus on the impact of the nuclear equation of state (EOS). We find that the neutrino event rate depends on both the high-density and low-density EOS, where the former determines the radius of the PNS and the latter affects its surface temperature. Based on the present evaluation of the neutrino event rate we propose a new analysis method to extract the time variability of the neutrino average energy taking into account the statistical error in the observation.
We calculate the Supernova Relic Neutrino (SRN) background flux for the KamLAND and Super-Kamiokande (SK) detectors, motivated by the reduction in background at SK and new results for the star formation history (e.g., from the Sloan Digital Sky Surve y (SDSS)). Our best estimate for the flux at SK is slightly below, but very close to the current SK upper limit. The SK upper limit is already inconsistent with a range of star formation histories allowed by the SDSS data. We estimate that the SRN background should be detected (at 1-sigma) at SK with a total of about 9 years (including the existing 4 years) of data. While KamLAND is a much smaller detector compared to SK, it profits from being practically background-free and from its sensitivity to the lower energy supernova neutrinos. KamLAND could make a 1-sigma detection of the SRN with a total of about 5 years of data. Given the small expected SRN event rate, we also consider the detection of the SRN in a modified SK detector with a lower threshold and reduced background where the time to detection can be reduced by a factor of 10 relative to the existing SK estimate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا