ترغب بنشر مسار تعليمي؟ اضغط هنا

Tailored pump-probe transient spectroscopy with time-dependent density-functional theory: controlling absorption spectra

157   0   0.0 ( 0 )
 نشر من قبل Jessica Walkenhorst
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent advances in laser technology allow us to follow electronic motion at its natural time-scale with ultra-fast time resolution, leading the way towards attosecond physics experiments of extreme precision. In this work, we assess the use of tailored pumps in order to enhance (or reduce) some given features of the probe absorption (for example, absorption in the visible range of otherwise transparent samples). This type of manipulation of the system response could be helpful for its full characterization, since it would allow us to visualize transitions that are dark when using unshaped pulses. In order to investigate these possibilities, we perform first a theoretical analysis of the non-equilibrium response function in this context, aided by one simple numerical model of the Hydrogen atom. Then, we proceed to investigate the feasibility of using time-dependent density-functional theory as a means to implement, theoretically, this absorption-optimization idea, for more complex atoms or molecules. We conclude that the proposed idea could in principle be brought to the laboratory: tailored pump pulses can excite systems into light-absorbing states. However, we also highlight the severe numerical and theoretical difficulties posed by the problem: large-scale non-equilibrium quantum dynamics are cumbersome, even with TDDFT, and the shortcomings of state-of-the-art TDDFT functionals may still be serious for these out-of-equilibrium situations.



قيم البحث

اقرأ أيضاً

Molecular absorption and photo-electron spectra can be efficiently predicted with real-time time-dependent density-functional theory (TDDFT). We show here how these techniques can be easily extended to study time-resolved pump-probe experiments in wh ich a system response (absorption or electron emission) to a probe pulse, is measured in an excited state. This simulation tool helps to interpret the fast evolving attosecond time-resolved spectroscopic experiments, where the electronic motion must be followed at its natural time-scale. We show how the extra degrees of freedom (pump pulse duration, intensity, frequency, and time-delay), which are absent in a conventional steady state experiment, provide additional information about electronic structure and dynamics that improve a system characterization. As an extension of this approach, time-dependent 2D spectroscopies can also be simulated, in principle, for large-scale structures and extended systems.
Systems whose underlying classical dynamics are chaotic exhibit signatures of the chaos in their quantum mechanics. We investigate the possibility of using time-dependent density functional theory (TDDFT) to study the case when chaos is induced by el ectron-interaction alone. Nearest-neighbour level-spacing statistics are in principle exactly and directly accessible from TDDFT. We discuss how the TDDFT linear response procedure can reveal the mechanism of chaos induced by electron-interaction alone. A simple model of a two-electron quantum dot highlights the necessity to go beyond the adiabatic approximation in TDDFT.
The development of analytic-gradient methodology for excited states within conventional time-dependent density-functional theory (TDDFT) would seem to offer a relatively inexpensive alternative to better established quantum-chemical approaches for th e modeling of photochemical reactions. However, even though TDDFT is formally exact, practical calculations involve the use of approximate functionals, in particular the TDDFT adiabatic approximation, whose use in photochemical applications must be further validated. Here, we investigate the prototypical case of the symmetric CC ring opening of oxirane. We demonstrate by direct comparison with the results of high-quality quantum Monte Carlo calculations that, far from being an approximation on TDDFT, the Tamm-Dancoff approximation (TDA) is a practical necessity for avoiding triplet instabilities and singlet near instabilities, thus helping maintain energetically reasonable excited-state potential energy surfaces during bond breaking. Other difficulties one would encounter in modeling oxirane photodynamics are pointed out but none of these is likely to prevent a qualitatively correct TDDFT/TDA description of photochemistry in this prototypical molecule.
We present a systematic study of the photo-absorption spectra of various Si$_{n}$H$_{m}$ clusters (n=1-10, m=1-14) using the time-dependent density functional theory (TDDFT). The method uses a real-time, real-space implementation of TDDFT involving f ull propagation of the time dependent Kohn-Sham equations. Our results for SiH$_{4}$ and Si$_{2}$H$_{6}$ show good agreement with the earlier calculations and experimental data. We find that for small clusters (n<7) the photo-absorption spectrum is atomic-like while for the larger clusters it shows bulk-like behaviour. We study the photo-absorption spectra of silicon clusters as a function of hydrogenation. For single hydrogenation, we find that in general, the absorption optical gap decreases and as the number of silicon atoms increase the effect of a single hydrogen atom on the optical gap diminishes. For further hydrogenation the optical gap increases and for the fully hydrogenated clusters the optical gap is larger compared to corresponding pure silicon clusters.
We present accurate optical spectra of semiconductors and insulators within a pure Kohn-Sham time-dependent density-functional approach. In particular, we show that the onset of the absorption is well reproduced when comparing to experiment. No empir ical information nor a theory beyond Kohn-Sham density-functional theory, such as $GW$, is invoked to correct the Kohn-Sham gap. Our approach relies on the link between the exchange-correlation kernel of time-dependent density functional theory and the derivative discontinuity of ground-state density-functional theory. We show explicitly how to relate these two quantities. We illustrate the accuracy and simplicity of our approach by applying it to various semiconductors (Si, GaP, GaAs) and wide-gap insulators (C, LiF, Ar).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا