ترغب بنشر مسار تعليمي؟ اضغط هنا

On Electroweak Phase Transition and Di-photon Excess with a 750 GeV Scalar Resonance

92   0   0.0 ( 0 )
 نشر من قبل Anish Ghoshal
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Anish Ghoshal




اسأل ChatGPT حول البحث

For successful electroweak baryogenesis to take place through the sphaleron process the universe needs to undergo a strong first order cosmological phase transition. While it does not occur in the Standard Model it becomes possible in the presence of extra scalars in BSM. One of these scalars can well be responsible for the recently observed diphoton excess in the CMS and ATLAS experiments in LHC. We study the Electroweak phase transition in a myriad of scalar models in this context.



قيم البحث

اقرأ أيضاً

We explore several perturbative scenarios in which the di-photon excess at 750 GeV can potentially be explained: a scalar singlet, a two Higgs doublet model (2HDM), a 2HDM with an extra singlet, and the decays of heavier resonances, both vector and s calar. We draw the following conclusions: (i) due to gauge invariance a 750 GeV scalar singlet can accommodate the observed excess more readily than a scalar SU(2)_L doublet; (ii) scalar singlet production via gluon fusion is one option, however, vector boson fusion can also provide a large enough rate, (iii) 2HDMs with an extra singlet and no extra fermions can only give a signal in a severely tuned region of the parameter space; (iv) decays of heavier resonances can give a large enough di-photon signal at 750 GeV, while simultaneously explaining the absence of a signal at 8 TeV.
Motivated by the recent LHC discovery of the di-photon excess at the invariant mass of ~ 750 GeV, we study the prospect of investigating the scalar resonance at a future photon-photon collider. We show that, if the di-photon excess observed at the LH C is due to a new scalar boson coupled to the standard-model gauge bosons, such a scalar boson can be observed and studied at the photon-photon collider with the center-of-mass energy of ~ 1 TeV in large fraction of parameter space.
We present a simple extension of the standard model (SM) to explain the diphoton excess, reported by CMS and ATLAS at CERN LHC. The SM is extended by a dark sector including a vector-like lepton doublet and a singlet of zero electromagnetic charge, w hich are odd under a $Z_2$ symmetry. These vector-like leptons assist the additional scalar, different from SM Higgs, to decay to di-photons of invariant mass around 750 GeV and thus explaining the excess observed at LHC. The admixture of neutral component of the vector-like lepton doublet and singlet constitute the dark matter component of the Universe. We show the relevant parameter space for correct relic density and direct detection of dark matter.
We study the possibility of explaining the recently reported 750 GeV di-photon excess at LHC within the framework of a left-right symmetric model. The 750 GeV neutral scalar in the model is dominantly an admixture of neutral components of scalar bido ublets with a tiny fraction of neutral scalar triplet. Incorporating $SU(2)$ septuplet scalar pairs into the model, we enhance the partial decay width of the 750 GeV neutral scalar into di-photons through charged septuplet components in loop while keeping the neutral septuplet components as subdominant dark matter candidates. The model also predicts the decay width of the 750 GeV scalar to be around 36 GeV to be either confirmed or ruled out by future LHC data. The requirement of producing the correct di-photon signal automatically keeps the septuplet dark matter abundance subdominant in agreement with bounds from direct and indirect detection experiments. We then briefly discuss different possibilities to account for the remaining dark matter component of the Universe in terms of other particle candidates whose stability arise either due to remnant discrete symmetry after spontaneous breaking of $U(1)_{B-L}$ or due to high $SU(2)$-dimension forbidding their decay into lighter particles.
Motivated by the recent diphoton excesses reported by both ATLAS and CMS collaborations, we suggest that a new heavy spinless particle is produced in gluon fusion at the LHC and decays to a couple of lighter pseudoscalars which then decay to photons. The new resonances could arise from a new strongly interacting sector and couple to Standard Model gauge bosons only via the corresponding Wess-Zumino-Witten anomaly. We present a detailed recast of the newest 13 TeV data from ATLAS and CMS together with the 8 TeV data to scan the consistency of the parameter space for those resonances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا