ﻻ يوجد ملخص باللغة العربية
There are no known examples of magnetic white dwarfs with fields larger than about 3MG paired with a non-degenerate companion in detached binary systems. The suggestion is that highly magnetic, isolated white dwarfs may originate from stars that coalesce during common envelope evolution while those stars that emerge from a common envelope on a close orbit may evolve into double degenerate systems consisting of two white dwarfs, one or both magnetic. The presence of planets or planetary debris around white dwarfs is also a new and exciting area of research that may give us important clues on the formation of first and second generation planetary systems, since these place unique signatures in the spectra of white dwarfs.
In this paper we review the current status of research on the observational and theoretical characteristics of isolated and binary magnetic white dwarfs (MWDs). Magnetic fields of isolated MWDs are observed to lie in the range 10^3-10^9G. While the
A significant fraction of white dwarfs possess a magnetic field with strengths ranging from a few kG up to about 1000 MG. However, the incidence of magnetism varies when the white dwarf population is broken down into different spectral types providin
A significant fraction of white dwarfs harbour a magnetic field with strengths ranging from a few kG up to about 1000 MG. The fraction appears to depend on the specific class of white dwarfs being investigated and may hold some clues to the origin of
We present the first radiation magnetohydrodynamics simulations of the atmosphere of white dwarf stars. We demonstrate that convective energy transfer is seriously impeded by magnetic fields when the plasma-beta parameter, the thermal to magnetic pre
Using our newly developed model atmosphere code appropriate for magnetic white dwarfs with metal lines in the Paschen-Back regime, we study various magnetic white dwarfs and explore the effects of various parameters such as the field geometry and the convective efficiency