ﻻ يوجد ملخص باللغة العربية
We determine the contribution to the anomalous magnetic moment of the muon from the $alpha^2_{mathrm{QED}}$ hadronic vacuum polarization diagram using full lattice QCD and including $u/d$ quarks with physical masses for the first time. We use gluon field configurations that include $u$, $d$, $s$ and $c$ quarks in the sea at multiple values of the lattice spacing, multiple $u/d$ masses and multiple volumes that allow us to include an analysis of finite-volume effects. We obtain a result for $a_{mu}^{mathrm{HVP,LO}}$ of $667(6)(12)$, where the first error is from the lattice calculation and the second includes systematic errors from missing QED and isospin-breaking effects and from quark-line disconnected diagrams. Our result implies a discrepancy between the experimental determination of $a_{mu}$ and the Standard Model of 3$sigma$.
We present a calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, $a_mu^{mathrm hvp}$, in lattice QCD employing dynamical up and down quarks. We focus on controlling the infrared regime of the vacuum pol
We calculate the contribution to the muon anomalous magnetic moment hadronic vacuum polarization from {the} connected diagrams of up and down quarks, omitting electromagnetism. We employ QCD gauge-field configurations with dynamical $u$, $d$, $s$, an
We compute the vacuum polarisation on the lattice in quenched QCD using non-perturbatively improved Wilson fermions. Above Q^2 of about 2 GeV^2 the results are very close to the predictions of perturbative QCD. Below this scale we see signs of non-pe
We introduce a new method for calculating the ${rm O}(alpha^3)$ hadronic-vacuum-polarization contribution to the muon anomalous magnetic moment from ${ab-initio}$ lattice QCD. We first derive expressions suitable for computing the higher-order contri
We study the finite-volume correction on the hadronic vacuum polarization contribution to the muon g-2 ($a_mu^{rm hvp}$) in lattice QCD at (near) physical pion mass using two different volumes: $(5.4~{rm fm})^4$ and $(8.1~{rm fm})^4$. We use an optim