ترغب بنشر مسار تعليمي؟ اضغط هنا

Off-shell amplitudes as boundary integrals of analytically continued Wilson line slope

108   0   0.0 ( 0 )
 نشر من قبل Piotr Kotko
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the methods to calculate tree-level multi-gluon scattering amplitudes is to use the Berends-Giele recursion relation involving off-shell currents or off-shell amplitudes, if working in the light cone gauge. As shown in recent works using the light-front perturbation theory, solutions to these recursions naturally collapse into gauge invariant and gauge-dependent components, at least for some helicity configurations. In this work, we show that such structure is helicity independent and emerges from analytic properties of matrix elements of Wilson line operators, where the slope of the straight gauge path is shifted in a certain complex direction. This is similar to the procedure leading to the Britto-Cachazo-Feng-Witten (BCFW) recursion, however we apply a complex shift to the Wilson line slope instead of the external momenta. While in the original BCFW procedure the boundary integrals over the complex shift vanish for certain deformations, here they are non-zero and are equal to the off-shell amplitudes. The main result can thus be summarized as follows: we derive a decomposition of a helicity-fixed off-shell current into gauge invariant component given by a matrix element of a straight Wilson line plus a reminder given by a sum of products of gauge invariant and gauge dependent quantities. We give several examples realizing this relation, including the five-point next-to-MHV helicity configuration.

قيم البحث

اقرأ أيضاً

In this paper we consider tree-level gauge invariant off-shell amplitudes (Wilson line form factors) in $mathcal{N}=4$ SYM. For the off-shell amplitudes with one leg off-shell we present a conjecture for their Grassmannian integral representation in spinor helicity, twistor and momentum twistor parameterizations. The presented conjecture is successfully checked against BCFW results for MHV$_n$, NMHV$_4$ and NMHV$_5$ off-shell amplitudes. We have also verified that our Grassmannian integral representation correctly reproduces soft (on-shell) limit for the off-shell gluon momentum. It is shown that the (deformed) off-shell amplitude expressions could be also obtained using quantum inverse scattering method for auxiliary $gl(4|4)$ super spin chain.
We study Feynman integrals and scattering amplitudes in ${cal N}=4$ super-Yang-Mills by exploiting the duality with null polygonal Wilson loops. Certain Feynman integrals, including one-loop and two-loop chiral pentagons, are given by Feynman diagram s of a supersymmetric Wilson loop, where one can perform loop integrations and be left with simple integrals along edges. As the main application, we compute analytically for the first time, the symbol of the generic ($ngeq 12$) double pentagon, which gives two-loop MHV amplitudes and components of NMHV amplitudes to all multiplicities. We represent the double pentagon as a two-fold $mathrm{d} log$ integral of a one-loop hexagon, and the non-trivial part of the integration lies at rationalizing square roots contained in the latter. We obtain a remarkably compact algebraic words which contain $6$ algebraic letters for each of the $16$ square roots, and they all nicely cancel in combinations for MHV amplitudes and NMHV components which are free of square roots. In addition to $96$ algebraic letters, the alphabet consists of $152$ dual conformal invariant combinations of rational letters.
The three-loop four-point function of stress-tensor multiplets in N=4 super Yang-Mills theory contains two so far unknown, off-shell, conformal integrals, in addition to the known, ladder-type integrals. In this paper we evaluate the unknown integral s, thus obtaining the three-loop correlation function analytically. The integrals have the generic structure of rational functions multiplied by (multiple) polylogarithms. We use the idea of leading singularities to obtain the rational coefficients, the symbol - with an appropriate ansatz for its structure - as a means of characterising multiple polylogarithms, and the technique of asymptotic expansion of Feynman integrals to obtain the integrals in certain limits. The limiting behaviour uniquely fixes the symbols of the integrals, which we then lift to find the corresponding polylogarithmic functions. The final formulae are numerically confirmed. The techniques we develop can be applied more generally, and we illustrate this by analytically evaluating one of the integrals contributing to the same four-point function at four loops. This example shows a connection between the leading singularities and the entries of the symbol.
We analyze the off-shell scattering amplitudes in the framework of the light-front perturbation theory. It is shown that the previously derived recursion relation between tree level off-shell amplitudes in this formalism actually resums whole classes of graphs into a Wilson line. More precisely, we establish a correspondence between the light-front methods for the computation of the off-shell amplitudes and the approach which makes use of the matrix elements of straight infinite Wilson lines, which are manifestly gauge invariant objects. Furthermore, since it is needed to explicitly verify the gauge invariance of light-front amplitudes, it is demonstrated that the Ward identities in this framework need additional instantaneous terms in the light-front graphs.
We describe the calculation of all planar master integrals that are needed for the computation of NNLO QCD corrections to the production of two off-shell vector bosons in hadron collisions. The most complicated representatives of integrals in this cl ass are the two-loop four-point functions where two external lines are on the light-cone and two other external lines have different invariant masses. We compute these and other relevant integrals analytically using differential equations in external kinematic variables and express our results in terms of Goncharov polylogarithms. The case of two equal off-shellnesses, recently considered in Ref. [1], appears as a particular case of our general solution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا