ﻻ يوجد ملخص باللغة العربية
New superstrong forces, analogous to QCD but featuring a larger mass scale, should they exist, would offer new possibilities for addressing the strong P, T, problem. One can implement the massless quark solution in a phenomenologically acceptable way, by using a massless quark that is always confined within superheavy particles, and is therefore effectively superheavy: a cryptoquark. Assuming confinement and chiral symmetry breaking from the superstrong dynamics, we find a new mechanism to generate an axion field without introducing new fundamental scalar fields.
Models with spontaneously broken parity symmetry can solve the strong $CP$ problem in a natural way. We construct such a model in the context of $SU3^3$ unification. Parity has the conventional meaning in this model, and the gauge group is unified.
We construct a theory in which the solution to the strong CP problem is an emergent property of the background of the dark matter in the Universe. The role of the axion degree of freedom is played by multi-body collective excitations similar to spin-
We show that QCD instantons can generate large effects at small length scales in the ultraviolet in standard composite Higgs models that utilise partial compositeness. This has important implications for possible solutions of the strong CP problem in
Many meson processes are related to the U_A(1) axial anomaly, present in the Feynman graphs where fermion loops connect axial vertices with vector vertices. However, the coupling of pseudoscalar mesons to quarks does not have to be formulated via axi
A very light scalar top (stop) superpartner is motivated by naturalness and electroweak baryogenesis. When the mass of the stop is less than the sum of the masses of the top quark and the lightest neutralino superpartner, as well as the of the masses