ﻻ يوجد ملخص باللغة العربية
KIC 7177553 was observed by the Kepler satellite to be an eclipsing eccentric binary star system with an 18-day orbital period. Recently, an eclipse timing study of the Kepler binaries has revealed eclipse timing variations in this object with an amplitude of about 100 sec, and an outer period of 529 days. The implied mass of the third body is that of a superJupiter, but below the mass of a brown dwarf. We therefore embarked on a radial velocity study of this binary to determine its system configuration and to check the hypothesis that it hosts a giant planet. From the radial velocity measurements, it became immediately obvious that the same Kepler target contains another eccentric binary, this one with a 16.5-day orbital period. Direct imaging using adaptive optics reveals that the two binaries are separated by 0.4 arcsec (about 167 AU), and have nearly the same magnitude (to within 2%). The close angular proximity of the two binaries, and very similar Gamma velocities, strongly suggest that KIC 7177553 is one of the rare SB4 systems consisting of two eccentric binaries where at least one system is eclipsing. Both systems consist of slowly rotating, non-evolved, solar-like stars of comparable masses. From the orbital separation and the small difference in Gamma velocity, we infer that the period of the outer orbit most likely lies in the range 1000 to 3000 years. New images taken over the next few years, as well as the high-precision astrometry of the Gaia satellite mission, will allow us to set much narrower constraints on the system geometry. Finally, we note that the observed eclipse timing variations in the Kepler data cannot be produced by the second binary. Further spectroscopic observations on a longer time scale will be required to prove the existence of the massive planet.
We have identified a quadruple system with two close eclipsing binaries in TESS data. The object is unresolved in Gaia and appears as a single source at parallax 1.08~$pm$0.01 mas. Both binaries have observable primary and secondary eclipses and were
We report the discovery of a compact, coplanar, quadruply-lined, eclipsing quadruple star system from TESS data, TIC 454140642, also known as TYC 0074-01254-1. The target was first detected in Sector 5 with 30-min cadence in Full-Frame Images and the
KIC 4247791 is an eclipsing binary observed by the Kepler satellite mission. We wish to determine the nature of its components and in particular the origin of a shallow dip in its Kepler light curve that previous investigations have been unable to ex
We present a strongly interacting quadruple system associated with the K2 target EPIC 220204960. The K2 target itself is a Kp = 12.7 magnitude star at Teff ~ 6100 K which we designate as B-N (blue northerly image). The host of the quadruple system, h
We present a quintuple star system that contains two eclipsing binaries. The unusual architecture includes two stellar images separated by 11 on the sky: EPIC 212651213 and EPIC 212651234. The more easterly image (212651213) actually hosts both eclip