ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity in Tl_{0.6}Bi_{2}Te_{3} Derived from a Topological Insulator

73   0   0.0 ( 0 )
 نشر من قبل Yoichi Ando
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bulk superconductivity has been discovered in Tl_{0.6}Bi_{2}Te_{3}, which is derived from the topological insulator Bi2Te3. The superconducting volume fraction of up to 95% (determined from specific heat) with Tc of 2.28 K was observed. The carriers are p-type with the density of ~1.8 x 10^{20} cm^{-3}. Resistive transitions under magnetic fields point to an unconventional temperature dependence of the upper critical field B_{c2}. The crystal structure appears to be unchanged from Bi2Te3 with a shorter c-lattice parameter, which, together with the Rietveld analysis, suggests that Tl ions are incorporated but not intercalated. This material is an interesting candidate of a topological superconductor which may be realized by the strong spin-orbit coupling inherent to topological insulators.

قيم البحث

اقرأ أيضاً

Superconducting topological crystalline insulators (TCI) are predicted to host new topological phases protected by crystalline symmetries, but available materials are insufficiently suitable for surface studies. To induce superconductivity at the sur face of a prototypical TCI SnTe, we use molecular beam epitaxy to grow a heterostructure of SnTe and a high-Tc superconductor Fe(Te,Se), utilizing a buffer layer to bridge the large lattice mismatch between SnTe and Fe(Te,Se). Using low-temperature scanning tunneling microscopy and spectroscopy, we measure a prominent spectral gap on the surface of SnTe, and demonstrate its superconducting origin by its dependence on temperature and magnetic field. Our work provides a new platform for atomic-scale investigations of emergent topological phenomena in superconducting TCIs.
We present angle resolved photoemission experiments and scanning tunneling spectroscopy results on the doped topological insulator Cu0.2Bi2Te3. Quasi-particle interference (QPI) measurements, based on high resolution conductance maps of the local den sity of states show that there are three distinct energy windows for quasi-particle scattering. Using a model Hamiltonian for this system two new scattering channels are identified: the first between the surface states and the conduction band and the second between conduction band states. We also observe that the real space density modulation has a predominant three-fold symmetry, which rules out a simple, isotropic impurity potential. We obtain agreement between experiment and theory by considering a modified scattering potential that is consistent with having mostly Bi-Te anti-site defects as scatterers.
104 - Tian Le , Qikai Ye , Chufan Chen 2021
Three-dimensional topological insulators (TIs) attract much attention due to its topologically protected Dirac surface states. Doping into TIs or their proximity with normal superconductors can promote the realization of topological superconductivity (SC) and Majorana fermions with potential applications in quantum computations. Here, an emergent superconductivity was observed in local mesoscopic point-contacts on the topological insulator Bi2Se3 by applying a voltage pulse through the contacts, evidenced by the Andreev reflection peak in the point-contact spectra and a visible resistance drop in the four-probe electrical resistance measurements. More intriguingly, the superconductivity can be erased with thermal cycles by warming up to high temperatures (300 K) and induced again by the voltage pulse at the base temperature (1.9 K), suggesting a significance for designing new types of quantum devices. Nematic behaviour is also observed in the superconducting state, similar to the case of CuxBi2Se3 as topological superconductor candidates.
The structural and electronic properties of FeSe ultra-thin layers on Bi$_{2}$Se$_{3}$ have been investigated with a combination of scanning tunneling microscopy and spectroscopy and angle-resolved photoemission spectroscopy. The FeSe multi-layers, w hich are predominantly 3-5 monolayers (ML) thick, exhibit a hole pocket-like electron band at bar{Gamma} and a dumbbell-like feature at bar{M}, similar to multi-layers of FeSe on SrTiO$_{3}$. Moreover, the topological state of the Bi2Se3 is preserved beneath the FeSe layer, as indicated by a heavily it{n}-doped Dirac cone. Low temperature STS does not exhibit a superconducting gap for any investigated thickness down to a temperature of 5 K.
115 - C. X. Trang , Z. Wang , D. Takane 2016
We have performed angle-resolved photoemission spectroscopy on Tl0.5Bi2Te3, a possible topological superconductor derived from Bi2Te3. We found that the bulk Fermi surface consists of multiple three-dimensional hole pockets surrounding the Z point, p roduced by the direct hole doping into the valence band. The Dirac-cone surface state is well isolated from the bulk bands, and the surface chemical potential is variable in the entire band-gap range. Tl0.5Bi2Te3 thus provides an excellent platform to realize two-dimensional topological superconductivity through a proximity effect from the superconducting bulk. Also, the observed Fermi-surface topology provides a concrete basis for constructing theoretical models for bulk topological superconductivity in hole-doped topological insulators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا