ترغب بنشر مسار تعليمي؟ اضغط هنا

Picosecond laser filamentation in air

226   0   0.0 ( 0 )
 نشر من قبل Stefan Skupin
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propagator for the optical field coupled with the rate equations for the production of various ionic species and plasma temperature. Our results show that the phenomenon of plasma-driven intensity clamping, which is paramount in femtosecond laser filamentation, holds for picosecond pulses. Furthermore, the temporal pulse distortions are limited and the pulse fluence is also clamped. The resulting unique feature of the picosecond filamentation regime is the production of a broad, fully ionized air channel, continuous both longitudinally and transversely, which may be instrumental for numerous applications.



قيم البحث

اقرأ أيضاً

136 - B. Dromey , L. Stella , D. Adams 2014
Direct investigation of ion-induced dynamics in matter on picosecond (ps, 10-12 s) timescales has been precluded to date by the relatively long nanosecond (ns, 10-9 s) scale ion pulses typically provided by radiofrequency accelerators1. By contrast, laser-driven ion accelerators provide bursts of ps duration2, but have yet to be applied to the study of ultrafast ion-induced transients in matter. We report on the evolution of an electron-hole plasma excited in borosilicate glass by such bursts. This is observed as an onset of opacity to synchronised optical probe radiation and is characterised by the 3.0 +/- 0.8 ps ion pump rise-time . The observed decay-time of 35 +/- 3 ps i.e. is in excellent agreement with modelling and reveals the rapidly evolving electron temperature (>10 3 K) and carrier number density (>10 17cm-3). This result demonstrates that ps laser accelerated ion bursts are directly applicable to investigating the ultrafast response of matter to ion interactions and, in particular, to ultrafast pulsed ion radiolysis of water3-5, the radiolytic decompositions of which underpin biological cell damage and hadrontherapy for cancer treatment6.
We investigate the generation of broadband terahertz (THz) pulses with phase singularity from air plasmas created by fundamental and second harmonic laser pulses. We show that when the second harmonic beam carries a vortex charge, the THz beam acquir es a vortex structure as well. A generic feature of such THz vortex is that the intensity is modulated along the azimuthal angle, which can be attributed to the spatially varying relative phase difference between the two pump harmonics. Fully space and time resolved numerical simulations reveal that transverse instabilities of the pump further affect the emitted THz field along nonlinear propagation, which produces additional singularities resulting in a rich vortex structure. The predicted intensity modulation is experimentally demonstrated with a thermal camera, in excellent agreement with simulation results. The presence of phase singularities in the experiment is revealed by astigmatic transformation of the beam using a cylindrical mirror.
Filamentation due to the growth of a Weibel-type instability was observed in the interaction of a pair of counter-streaming, ablatively-driven plasma flows, in a supersonic, collisionless regime relevant to astrophysical collisionless shocks. The flo ws were created by irradiating a pair of opposing plastic (CH) foils with 1.8 kJ, 2-ns laser pulses on the OMEGA EP laser system. Ultrafast laser-driven proton radiography was used to image the Weibel-generated electromagnetic fields. The experimental observations are in good agreement with the analytical theory of the Weibel instability and with particle-in-cell simulations.
100 - X. H. Yang , H. B. Zhuo , H. Xu 2016
Generation of relativistic electron (RE) beams during ultraintense laser pulse interaction with plasma targets is studied by collisional particle-in-cell (PIC) simulations. Strong magnetic field with transverse scale length of several local plasma sk in depths, associated with RE currents propagation in the target, is generated by filamentation instability (FI) in collisional plasmas, inducing a great enhancement of the divergence of REs compared to that of collisionless cases. Such effect is increased with laser intensity and target charge state, suggesting that the RE divergence might be improved by using low-Z materials under appropriate laser intensities in future fast ignition experiments and in other applications of laser-driven electron beams.
107 - G. Raj , O. Kononenko , A. Doche 2019
We present experimental measurements of the femtosecond time-scale generation of strong magnetic-field fluctuations during the interaction of ultrashort, moderately relativistic laser pulses with solid targets. These fields were probed using low-emit tance, highly relativistic electron bunches from a laser wakefield accelerator, and a line-integrated $B$-field of $2.70 pm 0.39,rm kT,mu m$ was measured. Three-dimensional, fully relativistic particle-in-cell simulations indicate that such fluctuations originate from a Weibel-type current filamentation instability developing at submicron scales around the irradiated target surface, and that they grow to amplitudes strong enough to broaden the angular distribution of the probe electron bunch a few tens of femtoseconds after the laser pulse maximum. Our results highlight the potential of wakefield-accelerated electron beams for ultrafast probing of relativistic laser-driven phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا