ﻻ يوجد ملخص باللغة العربية
We demonstrate an efficient core-shell GaAs/AlGaAs nanowire photodetector operating at room temperature. The design of this nanoscale detector is based on a type-I heterostructure combined with a metal-semiconductor-metal (MSM) radial architecture, in which built-in electric fields at the semiconductor heterointerface and at the metal/semiconductor Schottky contact promote photogenerated charge separation, enhancing photosensitivity. The spectral photoconductive response shows that the nanowire supports resonant optical modes in the near-infrared region, which lead to large photocurrent density in agreement with the predictions of electromagnetic and transport computational models. The single nanowire photodetector shows remarkable peak photoresponsivity of 0.57 A/W, comparable to large-area planar GaAs photodetectors on the market, and a high detectivity of 7.2 10^10 cmsqrt{Hz}/W at {lambda}=855 nm. This is promising for the design of a new generation of highly sensitive single nanowire photodetectors by controlling optical mode confinement, bandgap, density of states, and electrode engineering.
Enhanced photocurrent is demonstrated in a junction-less photodetector with nanowires embedded in its channel. The fabricated photodetector consists of a large area for efficient absorption of incident light with energy band engineering achieved in n
We have fabricated quantum dot single electron transistors, based on AlGaAs/GaAs heterojunctions without modulation doping, which exhibit clear and stable Coulomb blockade oscillations. The temperature dependence of the Coulomb blockade peak lineshap
Slow magnetooscilations of the conductivity are observed in a 75 nm wide quantum well at heating of the two-dimensional electrons by a high-intensity surface acoustic wave. These magnetooscillations are caused by intersubband elastic scattering betwe
We report on quantum Hall stripes (QHSs) formed in higher Landau levels of GaAs/AlGaAs quantum wells with high carrier density ($n_e > 4 times 10^{11}$ cm$^{-2}$) which is expected to favor QHS orientation along unconventional $left < 1bar{1}0 right
We study phonon emission in a GaAs/AlGaAs double quantum dot by monitoring the tunneling of a single electron between the two dots. We prepare the system such that a known amount of energy is emitted in the transition process. The energy is converted