ﻻ يوجد ملخص باللغة العربية
We investigate statistics of lead changes of the maxima of two discrete-time random walks in one dimension. We show that the average number of lead changes grows as $pi^{-1}ln(t)$ in the long-time limit. We present theoretical and numerical evidence that this asymptotic behavior is universal. Specifically, this behavior is independent of the jump distribution: the same asymptotic underlies standard Brownian motion and symmetric Levy flights. We also show that the probability to have at most n lead changes behaves as $t^{-1/4}[ln t]^n$ for Brownian motion and as $t^{-beta(mu)}[ln t]^n$ for symmetric Levy flights with index $mu$. The decay exponent $beta(mu)$ varies continuously with the Levy index when $0<mu<2$, while $beta=1/4$ for $mu>2$.
We consider one-dimensional discrete-time random walks (RWs) with arbitrary symmetric and continuous jump distributions $f(eta)$, including the case of Levy flights. We study the expected maximum ${mathbb E}[M_n]$ of bridge RWs, i.e., RWs starting an
We investigate the effects of markovian resseting events on continuous time random walks where the waiting times and the jump lengths are random variables distributed according to power law probability density functions. We prove the existence of a n
The various types of generalized Cattaneo, called also telegraphers equation, are studied. We find conditions under which solutions of the equations considered so far can be recognized as probability distributions, textit{i.e.} are normalizable and n
We study the random sequential adsorption of $k$-mers on the fully-connected lattice with $N=kn$ sites. The probability distribution $T_n(s,t)$ of the time $t$ needed to cover the lattice with $s$ $k$-mers is obtained using a generating function appr
In this work we study how a viral capsid can change conformation using techniques of Large Deviations Theory for stochastic differential equations. The viral capsid is a model of a complex system in which many units - the proteins forming the capsome