ترغب بنشر مسار تعليمي؟ اضغط هنا

Studies of relative gain and timing response of fine-mesh photomultiplier tubes in high magnetic fields

68   0   0.0 ( 0 )
 نشر من قبل Vincent Sulkosky
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the use of Hamamatsu fine-mesh photomultiplier tube assemblies H6152-70 and H6614-70 with regards to their gain and timing resolution in magnetic fields up to 1.9 T. Our results show that the H6614-70 assembly can operate reliably in magnetic fields exceeding 1.5 T, while preserving a reasonable timing resolution even with a gain reduction of a factor of approximately 100. The reduction of the relative gain of the H6152-70 is similar to the H6614-70s near 1.5 T, but its timing resolution worsens considerably at this high field.

قيم البحث

اقرأ أيضاً

We studied the single-photoelectron detection capabilities of a multianode photomultiplier tube H8500C-03 and its performance in high magnetic field. Our results show that the device can readily resolve signals at the single photoelectron level makin g it suitable for photon detection in both threshold and ring imaging Cerenkov detectors. We also found that a large longitudinal magnetic field, up to 300 Gauss, induces a change in the relative output of at most 55% for an edge pixel, and of at most 15% for a central pixel. The H8500C-03 signal loss in transverse magnetic fields it is significantly more pronounced than for the longitudinal case. Our studies of single photoelectron reduction in magnetic fields point to the field induced misfocusing of the photoelectron extracted from the photocathode as primary cause of signal loss. With appropriate shielding this PMT could function in high magnetic field environments.
The detector for the MiniBooNE experiment at the Fermi National Accelerator Laboratory employs 1520 8 inch Hamamatsu models R1408 and R5912 photomultiplier tubes with custom-designed bases. Tests were performed to determine the dark rate, charge and timing resolutions, double-pulsing rate, and desired operating voltage for each tube, so that the tubes could be sorted for optimal placement in the detector. Seven phototubes were tested to find the angular dependence of their response. After the Super-K phototube implosion accident, an analysis was performed to determine the risk of a similar accident with MiniBooNE.
The model R5912-20MOD photomultiplier tube(PMT) is made for cryogenic application by Hamamatsu. In this paper, we report on the measurement of relative quantum efficiency (QE) of this model PMT at liquid argon(LAr) temperature. Furthermore, a special ly designed setup and relevant test method are introduced. The relative QE is measured in visible wavelengths with the PMT emerged in high purity nitrogen atmosphere. The results show that the change of QE at LAr temperature is within about 5% compared with room temperature around 420 nm. However, the QE increases about 10% in the shorter wavelength range and decreases significantly after 550 nm.
The response of a position-sensitive Li-glass based scintillation detector to focused beams of 2.5 MeV protons and deuterons has been investigated. The beams were scanned across the detector in 0.5 mm horizontal and vertical steps perpendicular to th e beams. Scintillation light was registered using an 8 by 8 pixel multi-anode photomultiplier tube. The signal amplitudes were recorded for each pixel on an event-by-event basis. Several pixels generally registered considerable signals at each beam location. The number of pixels above set thresholds were investigated, with the optimization of the single-hit efficiency over the largest possible area as the goal. For both beams, at a threshold of ~50% of the mean of the full-deposition peak, ~80% of the events were registered in a single pixel, resulting in an effective position resolution of ~5 mm in X and Y.
Thin flexible sheets of high-permeability FINEMET foils encased in thin plastic layers have been used to shield various types of 20-cm-diameter photomultiplier tubes from ambient magnetic fields. In the presence of the Earths magnetic field this type of shielding is shown to increase the collection efficiency of photoelectrons and can improve the uniformity of response of these photomultiplier tubes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا