ﻻ يوجد ملخص باللغة العربية
A large dataset of ~2800 spectra extracted from the ELODIE archive was analysed in order to find solar twins. A list of stellar spectra closely resembling the spectrum of the Sun was selected by applying a purely differential method, directly on the fluxes. As solar reference, 18 spectra of asteroids, Moon and blue sky were used. Atmospheric parameters and differential abundances of 8 chemical elements were determined for the solar twin candidates, after a careful selection of appropriate lines. The Li feature of the targets was investigated and additional information on absolute magnitude and age was gathered from the literature. HIP076114 (HD138573) is our best twin candidate, looking exactly like the Sun in all these properties.
We present 63 Solar analogues and twins for which high S/N archival data are available for the HARPS high resolution spectrograph at the ESO 3.6m telescope. We perform a differential analysis of these stellar spectra relative to the Solar spectrum, s
Several abundance analyses of Galactic open clusters (OCs) have shown a tendency for Ba but not for other heavy elements (La$-$Sm) to increase sharply with decreasing age such that Ba was claimed to reach [Ba/Fe] $simeq +0.6$ in the youngest clusters
In December 2016, the Atacama Large Millimeter/submillimeter Array (ALMA) carried out the first regular observations of the Sun. These early observations and the reduction of the respective data posed a challenge due to the novelty and complexity of
Evolution of the 7Li abundance in the convection zone of the Sun during different stages of its life time is considered to explain its low photospheric value in comparison with that of the solar system meteorites. Lithium is intensively and transient
Stars in open clusters are expected to share an identical abundance pattern. Establishing the level of chemical homogeneity in a given open cluster deserves further study as it is the basis of the concept of chemical tagging to unravel the history of