ﻻ يوجد ملخص باللغة العربية
We present the structural and magnetic properties of a new compound family, Mg$_2$RE$_3$Sb$_3$O$_{14}$ (RE = Gd, Dy, Er), with a hitherto unstudied frustrating lattice, the tripod kagome structure. Susceptibility (ac, dc) and specific heat exhibit features that are understood within a simple Luttinger-Tisza type theory. For RE = Gd, we found long ranged order (LRO) at 1.65 K, which is consistent with a 120 $^{circ}$ structure, demonstrating the importance of diople interactions for this 2D Heisenberg system. For RE = Dy, LRO at 0.37 K is related to the kagome spin ice (KSI) physics for a 2D system. This result shows that the tripod kagome structure accelerates the transition to LRO predicted for the related pyrochlore systems. For RE = Er, two transitions, at 80 mK and 2.1 K are observed, suggesting the importance of quantum fluctuations for this putative XY system.
We present a systematic study of the structural and magnetic properties of two branches of the rare earth Tripod Kagome Lattice (TKL) family A$_{2}$RE$_{3}$Sb$_{3}$O$_{14}$ (A = Mg, Zn; RE = Pr, Nd, Gd, Tb, Dy, Ho, Er, Yb; here, we use abbreviation t
We report an experimental study of the static magnetization $M(H,T)$ and high-field electron spin resonance (ESR) of polycrystalline MgGd, a representative member of the newly discovered class of the so-called tripod-kagome antiferromagnets where the
The results of studies of Y$_{2}$Ti$_2$O$_7$ single crystals doped with Er$^{3+}$ and Yb$^{3+}$ ions by means of electron paramagnetic resonance (EPR) and dc-magnetometry are reported. EPR signals of the trigonal centers with the characteristic hyper
The spin wave excitations emerging from the chiral helically modulated 120$^{circ}$ magnetic order in a langasite Ba$_3$NbFe$_3$Si$_2$O$_{14}$ enantiopure crystal were investigated by unpolarized and polarized inelastic neutron scattering. A dynamica
Magnetic circular dichroism (MCD) in the x-ray absorption spectroscopy (XAS) at the L2,3 edges for almost entire series of rare-earth (RE) elements in RE2Fe14B, is studied experimentally and theoretically. By a quantitative comparison of the complica