ﻻ يوجد ملخص باللغة العربية
A theoretical investigation on slow light propagation based on eletromagnetically induced transparency in a three-level quantum-dot system is performed including non-Markovian effects and correlated dephasing reservoirs. It is demonstraonated that the non-Markovian nature of the process is quite essential even for conventional dephasing typical of quantum dots leading to significant enhancement or inhibition of the group velocity slow-down factor as well as to the shifting and distortion of the transmission window. Furthermore, the correlation between dephasing reservoirs may also either enhance or inhibit non-Markovian effects.
Sources of non-classical light are of paramount importance for future applications in quantum science and technology such as quantum communication, quantum computation and simulation, quantum sensing and quantum metrology. In this review we discuss t
A quantum kinetic theory is used to compute excitation induced dephasing in semiconductor quantum dots due to the Coulomb interaction with a continuum of states, such as a quantum well or a wetting layer. It is shown that a frequency dependent broade
Quantum non-Markovianity represents memory during the system dynamics, which is typically weakened by the temperature. We here study the effects of environmental temperature on the non-Markovianity of an open quantum system by virtue of collision mod
A Markovian process of a system is defined classically as a process in which the future state of the system is fully determined by only its present state, not by its previous history. There have been several measures of non-Markovianity to quantify t
We investigate the effect of counter-rotating-wave terms on the non-Markovianity in quantum open systems by employing the hierarchical equations of motion in the framework of the non-Markovian quantum state diffusion approach. As illustrative example