ترغب بنشر مسار تعليمي؟ اضغط هنا

Vlasov Simulations of Electron-Ion Collision Effects on Damping of Electron Plasma Waves

126   0   0.0 ( 0 )
 نشر من قبل Jeffrey Banks
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Collisional effects can play an essential role in the dynamics of plasma waves by setting a minimum damping rate and by interfering with wave-particle resonances. Kinetic simulations of the effects of electron-ion pitch angle scattering on Electron Plasma Waves (EPWs) are presented here. In particular, the effects of such collisions on the frequency and damping of small-amplitude EPWs for a range of collision rates and wave phase velocities are computed and compared with theory. Both the Vlasov simulations and linear kinetic theory find the direct contribution of electron-ion collisions to wave damping is about a factor of two smaller than is obtained from linearized fluid theory. To our knowledge, this simple result has not been published before. Simulations have been carried out using a grid-based (Vlasov) approach, based on a high-order conservative finite difference method for discretizing the Fokker-Planck equation describing the evolution of the electron distribution function. Details of the implementation of the collision operator within this framework are presented. Such a grid-based approach, which is not subject to numerical noise, is of particular interest for the accurate measurements of the wave damping rates.

قيم البحث

اقرأ أيضاً

157 - V. N. Soshnikov 2008
In this paper we have criticized the so-called Landau damping theory. We have analyzed solutions of the standard dispersion equations for longitudinal (electric) and transversal (electromagnetic and electron) waves in half-infinite slab of the unifor m collisionless plasmas with non-Maxwellian and Maxwellian-like electron energy distribution functions. One considered the most typical cases of both the delta-function type distribution function (the plasma stream with monochromatic electrons) and distribution functions, different from Maxwellian ones as with a surplus as well as with a shortage in the Maxwellian distribution function tail. It is shown that there are present for the considered cases both collisionless damping and also non-damping electron waves even in the case of non-Maxwellian distribution function.
170 - V. N. Soshnikov 2008
The before described general principles and methodology of calculating electron wave propagation in homogeneous isotropic half-infinity slab of Maxwellian plasma with indefinite but in principal value sense taken integrals in characteristic equations , and the use of 2D Laplace transform method are applied to an evaluation of collision damping decrements of plane electron longitudinal and transverse waves. Damping decrement tends to infinity when the wave frequency tends to electron Langmuir frequency from above values. We considered recurrent relations for amplitudes of the overtones which form in their sum the all solution of the plasma wave non-linear equations including collision damping and quadratic (non-linear) terms. Collisionless damping at frequencies more the Langmuir one is possible only in non-Maxwellian plasmas.
Experimental studies of electron-ion collision rates in an ultracold neutral plasma (UNP) can be conducted through measuring the rate of electron plasma oscillation damping. For sufficiently cold and dense conditions where strong coupling influences are important, the measured damping rate was faster by 37% than theoretical expectations [W. Chen, C. Witte, and J. Roberts, Phys. Rev. E textbf{96}, 013203 (2017)]. We have conducted a series of numerical simulations to isolate the primary source of this difference. By analyzing the distribution of electron velocity changes due to collisions in a molecular dynamics simulation, examining the trajectory of electrons with high deflection angle in such simulations, and examining the oscillation damping rate while varying the ratio of two-body to three-body electron-ion collision rates, we have found that the difference is consistent with the effect due to many-body collisions leading to bound electrons. This has implications for other electron-ion collision related transport properties in addition to electron oscillation damping.
115 - Yu. V. Medvedev 2017
The head-on collision of ion-acoustic solitary waves in a collisionless plasma with cold ions and Boltzmann electrons is studied. It is shown that solitary waves of sufficiently large amplitudes do not retain their identity after a collision. Their a mplitudes decrease and their forms change. Dependences of amplitudes of the potential and densities of ions and electrons after a head-on collision of identical solitary waves on their initial amplitude are presented.
Comparisons are presented between a hybrid Vlasov-Maxwell (HVM) simulation of turbulence in a collisionless plasma and fluid reductions. These include Hall-magnetohydrodynamics (HMHD) and Landau fluid (LF) or FLR-Landau fluid (FLR-LF) models that ret ain pressure anisotropy and low-frequency kinetic effects such as Landau damping and, for the last model, finite Larmor radius (FLR) corrections. The problem is considered in two space dimensions, when initial conditions involve moderate-amplitude perturbations of a homogeneous equilibrium plasma subject to an out-of-plane magnetic field. LF turns out to provide an accurate description of the velocity field up to the ion Larmor radius scale, and even to smaller scales for the magnetic field. Compressibility nevertheless appears significantly larger at the sub-ion scales in the fluid models than in the HVM simulation. High frequency kinetic effects, such as cyclotron resonances, not retained by fluid descriptions, could be at the origin of this discrepancy. A significant temperature anisotropy is generated, with a bias towards the perpendicular component, the more intense fluctuations being rather spread out and located in a broad vicinity of current sheets. Non-gyrotropic pressure tensor components are measured and their fluctuations are shown to reach a significant fraction of the total pressure fluctuation, with intense regions closely correlated with current sheets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا