ترغب بنشر مسار تعليمي؟ اضغط هنا

HD 18078: A very slowly rotating Ap star with an unusual magnetic field structure

61   0   0.0 ( 0 )
 نشر من قبل Gautier Mathys
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. The existence of a significant population of Ap stars with very long rotation periods (up to several hundred years) has progressively emerged over the past two decades. However, only lower limits of the periods are known for most of them because their variations have not yet been observed over a sufficient timebase. Aims. We determine the rotation period of the slowly rotating Ap star HD 18078 and we derive constraints on the geometrical structure of its magnetic field. Methods. We combine measurements of the mean magnetic field modulus obtained from 1990 to 1997 with determinations of the mean longitudinal magnetic field spanning the 1999-2007 time interval to derive an unambiguous value of the rotation period. We show that this value is consistent with photometric variations recorded in the Stroemgren uvby photometric system between 1995 and 2004. We fit the variations of the two above-mentioned field moments with a simple model to constrain the magnetic structure. Results. The rotation period of HD 18078 is (1358 +/- 12) d. The geometrical structure of its magnetic field is consistent to first order with a colinear multipole model whose axis is offset from the centre of the star. Conclusions. HD 18078 is only the fifth Ap star with a rotation period longer than 1000 days for which the exact value of that period (as opposed to a lower limit) could be determined. The strong anharmonicity of the variations of its mean longitudinal magnetic field and the shift between their extrema and those of the mean magnetic field modulus are exceptional and indicative of a very unusual magnetic structure.

قيم البحث

اقرأ أيضاً

66 - V.D. Bychkov , L.V. Bychkova , 2015
This paper presents a series of 95 new measurements of the longitudinal (effective) magnetic field $B_e$ of the Ap star $gamma$ Equ (HD 201601). Observations were obtained at the coude focus of the 1-m reflector at the Special Astrophysical Observato ry (SAO RAS) in Russia over a time period of 4190 days (more than 11 years). We compiled a long record of $B_e$ points, adding our measurements to all published data. The time series of magnetic data consists of 395 $B_e$ points extending for 24488 days, or over 67 years. Various methods of period determination were examined for the case in which the length of the observed time series is rather short and amounts only to ~69 percent of the period. We argue that the fitting of a sine wave to the observed $B_e$ points by least squares yields the most reliable period in the case of $gamma$ Equ. Therefore, the best period for long-term magnetic variations of $gamma$ Equ, and hence the rotational period, is $P_{rm rot}=35462.5 pm 1149$ days $= 97.16 pm 3.15$ years.
Among the known groups of pulsating stars, $delta$ Sct stars are one of the least understood. Theoretical models do not predict the oscillation frequencies that observations reveal. Complete asteroseismic studies are necessary to improve these models and better understand the internal structure of these targets. We study the $delta$ Sct star HD 41641 with the ultimate goal of understanding its oscillation pattern. The target was simultaneously observed by the CoRoT space telescope and the HARPS high-resolution spectrograph. The photometric data set was analyzed with the software package PERIOD04, while FAMIAS was used to analyze the line profile variations. The method of spectrum synthesis was used for spectroscopically determining the fundamental atmospheric parameters and individual chemical abundances. A total of 90 different frequencies was identified and analyzed. An unambiguous identification of the azimuthal order of the surface geometry could only be provided for the dominant p-mode, which was found to be a nonradial prograde mode with m = +1. Using $T_mathrm{eff}$ and $log g$, we estimated the mass, radius, and evolutionary stage of HD 41641. We find HD 41641 to be a moderately rotating, slightly evolved $delta$ Sct star with subsolar overall atmospheric metal content and unexpected chemical peculiarities. HD 41641 is a pure $delta$ Sct pulsator with p-mode frequencies in the range from 10 d$^{-1}$ to 20 d$^{-1}$. This pulsating star presents chemical signatures of an Ap star and rotational modulation due to surface inhomogeneities, which we consider indirect evidence of the presence of a magnetic field.
Stars are not perfectly spherically symmetric. They are deformed by rotation and magnetic fields. Until now, the study of stellar shapes has only been possible with optical interferometry for a few of the fastest-rotating nearby stars. We report an a steroseismic measurement, with much better precision than interferometry, of the asphericity of an A-type star with a rotation period of 100 days. Using the fact that different modes of oscillation probe different stellar latitudes, we infer a tiny but significant flattening of the stars shape of $Delta R/R = (1.8 pm 0.6) times 10^{-6}$. For a stellar radius $R$ that is $2.24$ times the solar radius, the difference in radius between the equator and the poles is $Delta R = 3 pm 1$ km. Because the observed $Delta R/R$ is only one-third of the expected rotational oblateness, we conjecture the presence of a weak magnetic field on a star that does not have an extended convective envelope. This calls to question the origin of the magnetic field.
Context. The Ap stars that rotate extremely slowly, with periods of decades to centuries, represent one of the keys to the understanding of the processes leading to the differentiation of stellar rotation. Aims. We characterise the variations of th e magnetic field of the Ap star HD 50169 and derive constraints about its structure. Methods. We combine published measurements of the mean longitudinal field <Bz> of HD 50169 with new determinations of this field moment from circular spectropolarimetry obtained at the 6-m telescope BTA of the Special Astrophysical Observatory of the Russian Academy of Sciences. For the mean magnetic field modulus <B>, literature data are complemented by the analysis of ESO spectra, both newly acquired and from the archive. Radial velocities are also obtained from these spectra. Results. We present the first determination of the rotation period of HD 50169, Prot = (29.04+/-0.82) y. HD 50169 is currently the longest-period Ap star for which magnetic field measurements have been obtained over more than a full cycle. The variation curves of both <Bz> and <B> have a significant degree of anharmonicity, and there is a definite phase shift between their respective extrema. We confirm that HD 50169 is a wide spectroscopic binary, refine its orbital elements, and suggest that the secondary is probably a dwarf star of spectral type M. Conclusions. The shapes and mutual phase shifts of the derived magnetic variation curves unquestionably indicate that the magnetic field of HD 50169 is not symmetric about an axis passing through its centre. Overall, HD 50169 appears similar to the bulk of the long-period Ap stars.
HD 98088 is a synchronised, double-lined spectroscopic binary system with a magnetic Ap primary component and an Am secondary component. We study this rare system using high-resolution MuSiCoS spectropolarimetric data, to gain insight into the effect of binarity on the origin of stellar magnetism and the formation of chemical peculiarities in A-type stars. Using a new collection of 29 high-resolution Stokes VQU spectra we re-derive the orbital and stellar physical parameters and conduct the first disentangling of spectroscopic observations of the system to conduct spectral analysis of the individual stellar components. From this analysis we determine the projected rotational velocities of the stars and conduct a detailed chemical abundance analysis of each component using both the SYNTH3 and ZEEMAN spectrum synthesis codes. The surface abundances of the primary component are typical of a cool Ap star, while those of the secondary component are typical of an Am star. We present the first magnetic analysis of both components using modern data. Using Least-Squares Deconvolution, we extract the longitudinal magnetic field strength of the primary component, which is observed to vary between +1170 and -920 G with a period consistent with the orbital period. There is no field detected in the secondary component. The magnetic field in the primary is predominantly dipolar, with the positive pole oriented approximately towards the secondary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا