ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetized White Dwarfs

64   0   0.0 ( 0 )
 نشر من قبل Diana Alvear Terrero
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The purpose of this thesis is to obtain more realistic equations of state to describe the matter forming magnetized white dwarfs, and use them to solve its structure equations. The equations of state are determined by considering the weak magnetic field approximation $B<B_c$ ($B_c=4.41times10^{13}text{ G}$) for the electron gas of the star. The magnetic field introduces anisotropic pressures, even for the moderate values present in white dwarfs. Also, we consider the energy and pressure correction due to the Coulomb interaction of the electron gas with the ions located in a crystal lattice. Moreover, spherically symmetric Tolman-Oppenheimer-Volkoff structure equations are solved independently for the perpendicular and parallel pressures, confirming the necessity of using axisymmetric structure equations, more adequate to describe the anisotropic system. Therefore, we study the solutions in cylindrical coordinates. In this case, the mass per longitude unit is obtained instead of the total mass of the white dwarf.



قيم البحث

اقرأ أيضاً

Recent evidence of super-Chandrasekhar white dwarfs (WDs), from the observations of over-luminous type Ia supernovae (SNeIa), has been a great astrophysical discovery. However, no such massive WDs have so far been observed directly as their luminosit ies are generally quite low. Hence it immediately raises the question of whether there is any possibility of detecting them directly. The search for super-Chandrasekhar WDs is very important as SNeIa are used as standard candles in cosmology. In this article, we show that continuous gravitational wave can allow us to detect such super-Chandrasekhar WDs directly.
Generally the virial theorem provides a relation between various components of energy integrated over a system. This helps us to understand the underlying equilibrium. Based on the virial theorem we can estimate, for example, the maximum allowed magn etic field in a star. Recent studies have proposed the existence of highly magnetized white dwarfs, with masses significantly higher than the Chandrasekhar limit. Surface magnetic fields of such white dwarfs could be more than 10^9 G with the central magnitude several orders higher. These white dwarfs could be significantly smaller in size than their ordinary counterparts (with surface fields restricted to about 10^9 G). In this paper we reformulate the virial theorem for non-rotating, highly magnetized white dwarfs (B-WDs) in which, unlike in previous formulations, the contribution of the magnetic pressure to the magnetohydrostatic balance cannot be neglected. Along with the new equation of magnetohydrostatic equilibrium, we approach the problem by invoking magnetic flux conservation and by varying the internal magnetic field with the matter density as a power law. Either of these choices are supported by previous independent work and neither violates any important physics. They are useful while there is no prior knowledge of field profile within a white dwarf. We then compute the modified gravitational, thermal and magnetic energies and examine how the magnetic pressure influences the properties of such white dwarfs. Based on our results we predict important properties of these B-WDs, which turn out to be independent of our chosen field profiles.
122 - J. Nordhaus 2011
Since their initial discovery, the origin of isolated white dwarfs (WDs) with magnetic fields in excess of $sim$1 MG has remained a mystery. Recently, the formation of these high-field magnetic WDs has been observationally linked to strong binary int eractions incurred during post-main-sequence evolution. Planetary, brown dwarf or stellar companions located within a few AU of main-sequence stars may become engulfed during the primarys expansion off the main sequence. Sufficiently low-mass companions in-spiral inside a common envelope until they are tidally shredded near the natal white dwarf. Formation of an accretion disk from the disrupted companion provides a source of turbulence and shear which act to amplify magnetic fields and transport them to the WD surface. We show that these disk-generated fields explain the observed range of magnetic field strengths for isolated, high-field magnetic WDs. Additionally, we discuss a high-mass binary analogue which generates a strongly-magnetized WD core inside a pre-collapse, massive star. Subsequent core-collapse to a neutron star may produce a magnetar.
98 - Maxim Lyutikov 2019
Mergers of white dwarfs (WDs) may lead to a variety of transient astrophysical events, SNIa being one possible outcome. Lyutikov & Toonen (2017, 2019) argued that mergers of WDs result, under various parameter regimes, in unusual central engine-power ed supernova and a type of short Gamma Ray Bursts that show extended emission tails. Observations by Gvaramadze et al. (2019) of the central star and the nebula J005311 match to the details the model of Lyutikov & Toonen (2017, 2019) for the immediate product of a merger of a heavy ONeMg WD with CO WD (age, luminosity, stellar size, hydrogen deficiency and chemical composition).
Recent detection of gravitational wave from nine black hole merger events and one neutron star merger event by LIGO and VIRGO shed a new light in the field of astrophysics. On the other hand, in the past decade, a few super-Chandrasekhar white dwarf candidates have been inferred through the peak luminosity of the light-curves of a few peculiar type Ia supernovae, though there is no direct detection of these objects so far. Similarly, a number of neutron stars with mass $>2M_odot$ have also been observed. Continuous gravitational wave can be one of the alternate ways to detect these compact objects directly. It was already argued that magnetic field is one of the prominent physics to form super-Chandrasekhar white dwarfs and massive neutron stars. If such compact objects are rotating with certain angular frequency, then they can efficiently emit gravitational radiation, provided their magnetic field and rotation axes are not aligned, and these gravitational waves can be detected by some of the upcoming detectors, e.g. LISA, BBO, DECIGO, Einstein Telescope etc. This will certainly be a direct detection of rotating magnetized white dwarfs as well as massive neutron stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا