ﻻ يوجد ملخص باللغة العربية
The desiderata for an ideal photon source are high brightness, high single-photon purity, and high indistinguishability. Defining brightness at the first collection lens, these properties have been simultaneously demonstrated with solid-state sources, however absolute source efficiencies remain close to the 1% level, and indistinguishability only demonstrated for photons emitted consecutively on the few nanosecond scale. Here we employ deterministic quantum dot-micropillar devices to demonstrate solid-state single-photon sources with scalable performance. In one device, an absolute brightness at the output of a single-mode fibre of 14% and purities of 97.1-99.0% are demonstrated. When non-resontantly excited, it emits a long stream of photons that exhibit indistinguishability up to 70%---above the classical limit of 50%---even after 33 consecutively emitted photons, a 400 ns separation between them. Resonant excitation in other devices results in near-optimal indistinguishability values: 96% at short timescales, remaining at 88% in timescales as large as 463 ns, after 39 emitted photons. The performance attained by our devices brings solid-state sources into a regime suitable for scalable implementations.
Single-photons are key elements of many future quantum technologies, be it for the realisation of large-scale quantum communication networks for quantum simulation of chemical and physical processes or for connecting quantum memories in a quantum com
A strong limitation of linear optical quantum computing is the probabilistic operation of two-quantum bit gates based on the coalescence of indistinguishable photons. A route to deterministic operation is to exploit the single-photon nonlinearity of
Solid-state emitters are excellent candidates for developing integrated sources of single photons. Yet, phonons degrade the photon indistinguishability both through pure dephasing of the zero-phonon line and through phonon-assisted emission. Here, we
In the quest to realize a scalable quantum network, semiconductor quantum dots (QDs) offer distinct advantages including high single-photon efficiency and indistinguishability, high repetition rate (tens of GHz with Purcell enhancement), interconnect
Emitters of indistinguishable single photons are crucial for the growing field of quantum technologies. To realize scalability and increase the complexity of quantum optics technologies, multiple independent yet identical single photon emitters are a