ﻻ يوجد ملخص باللغة العربية
Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. We use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured by the Planck satellite. We first update these models to match the Planck synchrotron products using a common model for the cosmic-ray leptons. We discuss the impact on this analysis of the ongoing problems of component separation in the Planck microwave bands and of the uncertain cosmic-ray spectrum. In particular, the inferred degree of ordering in the magnetic fields is sensitive to these systematic uncertainties, and we further show the importance of considering the expected variations in the observables in addition to their mean morphology. We then compare the resulting simulated emission to the observed dust polarization and find that the dust predictions do not match the morphology in the Planck data but underpredict the dust polarization away from the plane. We modify one of the models to roughly match both observables at high latitudes by increasing the field ordering in the thin disc near the observer. Though this specific analysis is dependent on the component separation issues, we present the improved model as a proof of concept for how these studies can be advanced in future using complementary information from ongoing and planned observational projects.
Using precise full-sky observations from Planck, and applying several methods of component separation, we identify and characterize the emission from the Galactic haze at microwave wavelengths. The haze is a distinct component of diffuse Galactic emi
The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions we
Observations of dwarf galaxies suggest the presence of large-scale magnetic fields. However the size and slow rotation of these galaxies appear insufficient to support a mean-field dynamo action to excite such fields. Here we suggest a new mechanism
A convenient representation of the structure of the large-scale galactic magnetic field is required for the interpretation of polarization data in the sub-mm and radio ranges, in both the Milky Way and external galaxies. We develop a simple and flexi
Planck data when combined with ancillary data provide a unique opportunity to separate the diffuse emission components of the inner Galaxy. The purpose of the paper is to elucidate the morphology of the various emission components in the strong star-