ﻻ يوجد ملخص باللغة العربية
We investigate how the following properties are related to each other: i)-A manifold is transversally exponentially stable; ii)-The transverse linearization along any solution in the manifold is exponentially stable; iii)-There exists a field of positive definite quadratic forms whose restrictions to the directions transversal to the manifold are decreasing along the flow. We illustrate their relevance with the study of exponential incremental stability. Finally, we apply these results to two control design problems, nonlinear observer design and synchronization. In particular, we provide necessary and sufficient conditions for the design of nonlinear observer and of nonlinear synchronizer with exponential convergence property.
In this paper, the existence conditions of nonuniform mean-square exponential dichotomy (NMS-ED) for a linear stochastic differential equation (SDE) are established. The difference of the conditions for the existence of a nonuniform dichotomy between
We give a criterion for exponential dynamical localization in expectation (EDL) for ergodic families of operators acting on $ell^2(Z^d)$. As applications, we prove EDL for a class of quasi-periodic long-range operators on $ell^2(Z^d)$.
In this paper, we discuss delayed periodic dynamical systems, compare capability of criteria of global exponential stability in terms of various $L^{p}$ ($1le p<infty$) norms. A general approach to investigate global exponential stability in terms of
This paper proposes a unified approach for studying global exponential stability of a general class of switched systems described by time-varying nonlinear functional differential equations. Some new delay-independent criteria of global exponential s
We discuss some frequency-domain criteria for the exponential stability of nonlinear feedback systems based on dissipativity theory. Applications are given to convergence rates for certain perturbations of the damped harmonic oscillator.