ﻻ يوجد ملخص باللغة العربية
Nova LMC 2009a is confirmed as a Recurrent Nova (RN) from positional coincidence with nova LMC 1971b. The observational data set is one of the most comprehensive for any Galactic or extragalactic RN: optical and near-IR photometry from outburst until over 6 years later; optical spectra for the first 6 months, and Swift satellite Ultraviolet and X-ray observations from 9 days to almost 1 year post-outburst. We find $M_V = -8.4pm0.8_{mathrm{r}}pm0.7_{mathrm{s}}$ and expansion velocities between 1000 and 4000 km s$^{-1}$. Coronal line emission before day 9 indicates shocks in the ejecta. Strengthening of He II $lambda$4686 preceded the emergence of the Super-Soft Source (SSS) in X-rays at $sim63-70$ days, which was initially very variable. Periodic modulations, $P=1.2$ days, most probably orbital in nature, were evident in the UV and optical from day 43. Subsequently, the SSS shows an oscillation with the same period but with a delay of 0.28P. The progenitor system has been identified; the secondary is most likely a sub-giant feeding a luminous accretion disk. Properties of the SSS infer a white dwarf (WD) mass $1.1 mathrm{M}_odot lesssim M_{rm WD} lesssim 1.3 mathrm{M}_odot$. If the accretion occurs at constant rate, $dot{it{M}}_{rm acc} simeq 3.6^{+4.7}_{-2.5} times 10^{-7} mathrm{M}_odot$ yr$^{-1}$ is needed, consistent with nova models for an inter-eruption interval of 38 years, low outburst amplitude, progenitor position in the color-magnitude diagram, and spectral energy distribution at quiescence. We note striking similarities between LMC 2009a and the Galactic nova KT Eri, suggesting that KT Eri is a candidate RN.
We present a comprehensive review of all observations of the eclipsing recurrent Nova LMC 1968 in the Large Magellanic Cloud which was previously observed in eruption in 1968, 1990, 2002, 2010, and most recently in 2016. We derive a probable recurren
The Andromeda Galaxy recurrent nova M31N 2008-12a had been observed in eruption ten times, including yearly eruptions from 2008-2014. With a measured recurrence period of $P_mathrm{rec}=351pm13$ days (we believe the true value to be half of this) and
Classical nova outburst has been suggested for a number of extragalactic symbiotic stars, but in none of the systems has it been proven. In this work we study the nature of one of these systems, LMC S154. We gathered archival photometric observations
We examine four high resolution reflection grating spectrometers (RGS) spectra of the February 2009 outburst of the luminous recurrent nova LMC 2009a. They were very complex and rich in intricate absorption and emission features. The continuum was co
The study of the younger, and brighter, pulsars is important to understand the optical emission properties of isolated neutron stars. PSRB0540-69, the second brightest (V~22) optical pulsar, is obviously a very interesting target for these investigat