ﻻ يوجد ملخص باللغة العربية
Northern Illinois University in collaboration with Fermi National Accelerator Laboratory (FNAL) and Delhi University has been designing and building a proton CT scanner for applications in proton treatment planning. The Phase II proton CT scanner consists of eight planes of tracking detectors with two X and two Y coordinate measurements both before and after the patient. In addition, a range stack detector consisting of a stack of thin scintillator tiles, arranged in twelve eight-tile frames, is used to determine the water equivalent path length (WEPL) of each track through the patient. The X-Y coordinates and WEPL are required input for image reconstruction software to find the relative (proton) stopping powers (RSP) value of each voxel in the patient and generate a corresponding 3D image. In this Note we describe tests conducted in 2015 at the proton beam at the Central DuPage Hospital in Warrenville, IL, focusing on the range stack calibration procedure and comparisons with the GEANT~4 range stack simulation.
We describe the development of a proton Computed Tomography (pCT) scanner at Northern Illinois University (NIU) in collaboration with Fermilab and Delhi University. This paper provides an overview of major components of the scanner and a detailed description of the data acquisition system (DAQ).
The European Spallation Source (ESS) is the worlds next generation spallation-based neutron source. The research conducted at ESS will yield in the discovery and development of new materials including the fields of manufacturing, pharmaceuticals, aer
Geant4 simulations play a crucial role in the analysis and interpretation of experiments providing low energy precision tests of the Standard Model. This paper focuses on the accuracy of the description of the electron processes in the energy range b
We have developed a low-energy electron recoil (ER) calibration method with $^{220}$Rn for the PandaX-II detector. $^{220}$Rn, emanated from natural thorium compounds, was fed into the detector through the xenon purification system. From 2017 to 2019
Modern TOF-PET scanner systems require high-speed computing resources for efficient data processing, monitoring and image reconstruction. In this article we present the data flow and software architecture for the novel TOF-PET scanner developed by th