ترغب بنشر مسار تعليمي؟ اضغط هنا

High resolution ALMA observations of dense molecular medium in the central regions of active galaxies

195   0   0.0 ( 0 )
 نشر من قبل Kotaro Kohno
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kotaro Kohno




اسأل ChatGPT حول البحث

In the central regions of active galaxies, dense molecular medium are exposed to various types of radiation and energy injections, such as UV, X-ray, cosmic ray, and shock dissipation. With the rapid progress of chemical models and implementation of new-generation mm/submm interferometry, we are now able to use molecules as powerful diagnostics of the physical and chemical processes in galaxies. Here we give a brief overview on the recent ALMA results to demonstrate how molecules can reveal underlying physical and chemical processes in galaxies. First, new detections of Galactic molecular absorption systems with elevated HCO/H$^{13}$CO$^+$ column density ratios are reported, indicating that these molecular media are irradiated by intense UV fields. Second, we discuss the spatial distributions of various types of shock tracers including HNCO, CH$_3$OH and SiO in NGC 253 and NGC 1068. Lastly, we provide an overview of proposed diagnostic methods of nuclear energy sources using ALMA, with an emphasis on the synergy with sensitive mid-infrared spectroscopy, which will be implemented by JWST and SPICA to disentangle the complex nature of heavily obscured galaxies across the cosmic time.



قيم البحث

اقرأ أيضاً

The mechanism behind the shaping of bipolar planetary nebulae is still poorly understood. Accurately tracing the molecule-rich equatorial regions of post-AGB stars can give valuable insight into the ejection mechanisms at work. We investigate the phy sical conditions, structure and velocity field of the dense molecular region of the planetary nebula NGC 6302 by means of ALMA band 7 interferometric maps. The high spatial resolution of the $^{12}$CO and $^{13}$CO J=3-2 ALMA data allows for an analysis of the geometry of the ejecta in unprecedented detail. We built a spatio-kinematical model of the molecular region with the software SHAPE and performed detailed non-LTE calculations of excitation and radiative transfer with the SHAPEMOL plug-in. We find that the molecular region consists of a massive ring out of which a system of fragments of lobe walls emerge and enclose the base of the lobes visible in the optical. The general properties of this region are in agreement with previous works, although the much greater spatial resolution of the data allows for a very detailed description. We confirm that the mass of the molecular region is 0.1 M$_{odot}$. Additionally, we report a previously undetected component at the nebular equator, an inner, younger ring inclined $sim$60$^circ$ with respect to the main ring, showing a characteristic radius of 7.5$times$10$^{16}$ cm, a mass of 2.7$times$10$^{-3}$ M$_{odot}$, and a counterpart in optical images of the nebula. This inner ring has the same kinematical age as the northwest optical lobes, implying it was ejected approximately at the same time, hundreds of years after the ejection of the bulk of the molecular ring-like region. We discuss a sequence of events leading to the formation of the molecular and optical nebulae, and briefly speculate on the origin of this intriguing inner ring.
156 - S. Garcia-Burillo 2008
The study of the content, distribution and kinematics of interstellar gas is a key to understand the origin and maintenance of both starburst and nuclear (AGN) activity in galaxies. The processes involved in AGN fueling encompass a wide range of scal es, both spatial and temporal, which have to be studied. Probing the gas flow from the outer disk down to the central engine of an AGN host, requires the use of specific tracers of the interstellar medium adapted to follow the change of phase of the gas as a function of radius. Current mm-interferometers can provide a sharp view of the distribution and kinematics of molecular gas in the circumnuclear disks of galaxies through extensive CO line mapping. As such, CO maps are an essential tool to study AGN feeding mechanisms in the local universe. This is the scientific driver of the NUclei of GAlaxies (NUGA) survey, whose latest results are here reviewed. On the other hand, the use of specific molecular tracers of the dense gas phase can probe the feedback influence of activity on the chemistry and energy balance/redistribution in the interstellar medium of nearby galaxies. Millimeter interferometers are able to unveil the strong chemical differentiation present in the molecular gas disks of nearby starbursts and AGNs. Nearby active galaxies can be used as local templates to address the study of more distant galaxies where both star formation and AGN activity are deeply embedded.
We present ALMA Cycle 1 observations of the central kpc region of the luminous type-1 Seyfert galaxy NGC 7469 with unprecedented high resolution (0.5$$ $times$ 0.4$$ = 165 pc $times$ 132 pc) at submillimeter wavelengths. Utilizing the wide-bandwidth of ALMA, we simultaneously obtained HCN(4-3), HCO$^+$(4-3), CS(7-6), and partially CO(3-2) line maps, as well as the 860 $mu$m continuum. The region consists of the central $sim$ 1$$ component and the surrounding starburst ring with a radius of $sim$ 1.5$$-2.5$$. Several structures connect these components. Except for CO(3-2), these dense gas tracers are significantly concentrated towards the central $sim$ 1$$, suggesting their suitability to probe the nuclear regions of galaxies. Their spatial distribution resembles well those of centimeter and mid-infrared continuum emissions, but it is anti-correlated with the optical one, indicating the existence of dust obscured star formation. The integrated intensity ratios of HCN(4-3)/HCO$^+$(4-3) and HCN(4-3)/CS(7-6) are higher at the AGN position than at the starburst ring, which is consistent to our previous findings (submm-HCN enhancement). However, the HCN(4-3)/HCO$^+$(4-3) ratio at the AGN position of NGC 7469 (1.11$pm$0.06) is almost half of the corresponding value of the low-luminosity type-1 Seyfert galaxy NGC 1097 (2.0$pm$0.2), despite the more than two orders of magnitude higher X-ray luminosity of NGC 7469. But the ratio is comparable to that of the close vicinity of the AGN of NGC 1068 ($sim$ 1.5). Based on these results, we speculate that some other heating mechanisms than X-ray (e.g., mechanical heating due to AGN jet) can contribute significantly for shaping the chemical composition in NGC 1097.
We present the results of our ALMA observations of eleven (ultra)luminous infrared galaxies ((U)LIRGs) at J=4-3 of HCN, HCO+, HNC and J=3-2 of HNC. This is an extension of our previously published HCN and HCO+ J=3-2 observations to multiple rotationa l J-transitions of multiple molecules, to investigate how molecular emission line flux ratios vary at different J-transitions. We confirm that ULIRGs that contain or may contain luminous obscured AGNs tend to show higher HCN-to-HCO+ flux ratios than starburst galaxies, both at J=4-3 and J=3-2. For selected HCN-flux-enhanced AGN-important ULIRGs, our isotopologue H13CN, H13CO+, and HN13C J=3-2 line observations suggest a higher abundance of HCN than HCO+ and HNC, which is interpreted to be primarily responsible for the elevated HCN flux in AGN-important galaxies. For such sources, the intrinsic HCN-to-HCO+ flux ratios after line opacity correction will be higher than the observed ratios, making the separation between AGNs and starbursts even larger. The signature of the vibrationally excited (v2=1f) HCN J=4-3 emission line is seen in one ULIRG, IRAS 12112-0305 NE. P Cygni profiles are detected in the HCO+ J=4-3 and J=3-2 lines toward IRAS 15250+3609, with an estimated molecular outflow rate of ~250-750 Mo/year. The SiO J=6-5 line also exhibits a P Cygni profile in IRAS 12112+0305 NE, suggesting the presence of shocked outflow activity. Shock tracers are detected in many sources, suggesting ubiquitous shock activity in the nearby ULIRG population.
We observe 1.3~mm spectral lines at 2000~AU resolution toward four massive molecular clouds in the Central Molecular Zone of the Galaxy to investigate their star formation activities. We focus on several potential shock tracers that are usually abund ant in protostellar outflows, including SiO, SO, CH$_3$OH, H$_2$CO, HC$_3$N, and HNCO. We identify 43 protostellar outflows, including 37 highly likely ones and 6 candidates. The outflows are found toward both known high-mass star forming cores and less massive, seemingly quiescent cores, while 791 out of the 834 cores identified based on the continuum do not have detected outflows. The outflow masses range from less than 1~$M_odot$ to a few tens of $M_odot$, with typical uncertainties of a factor of 70. We do not find evidence of disagreement between relative molecular abundances in these outflows and in nearby analogs such as the well-studied L1157 and NGC7538S outflows. The results suggest that i) protostellar accretion disks driving outflows ubiquitously exist in the CMZ environment, ii) the large fraction of candidate starless cores is expected if these clouds are at very early evolutionary phases, with a caveat on the potential incompleteness of the outflows, iii) high-mass and low-mass star formation is ongoing simultaneously in these clouds, and iv) current data do not show evidence of difference between the shock chemistry in the outflows that determines the molecular abundances in the CMZ environment and in nearby clouds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا