ترغب بنشر مسار تعليمي؟ اضغط هنا

Event Specific Multimodal Pattern Mining with Image-Caption Pairs

57   0   0.0 ( 0 )
 نشر من قبل Hongzhi Li
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we describe a novel framework and algorithms for discovering image patch patterns from a large corpus of weakly supervised image-caption pairs generated from news events. Current pattern mining techniques attempt to find patterns that are representative and discriminative, we stipulate that our discovered patterns must also be recognizable by humans and preferably with meaningful names. We propose a new multimodal pattern mining approach that leverages the descriptive captions often accompanying news images to learn semantically meaningful image patch patterns. The mutltimodal patterns are then named using words mined from the associated image captions for each pattern. A novel evaluation framework is provided that demonstrates our patterns are 26.2% more semantically meaningful than those discovered by the state of the art vision only pipeline, and that we can provide tags for the discovered images patches with 54.5% accuracy with no direct supervision. Our methods also discover named patterns beyond those covered by the existing image datasets like ImageNet. To the best of our knowledge this is the first algorithm developed to automatically mine image patch patterns that have strong semantic meaning specific to high-level news events, and then evaluate these patterns based on that criteria.



قيم البحث

اقرأ أيضاً

Visual patterns represent the discernible regularity in the visual world. They capture the essential nature of visual objects or scenes. Understanding and modeling visual patterns is a fundamental problem in visual recognition that has wide ranging a pplications. In this paper, we study the problem of visual pattern mining and propose a novel deep neural network architecture called PatternNet for discovering these patterns that are both discriminative and representative. The proposed PatternNet leverages the filters in the last convolution layer of a convolutional neural network to find locally consistent visual patches, and by combining these filters we can effectively discover unique visual patterns. In addition, PatternNet can discover visual patterns efficiently without performing expensive image patch sampling, and this advantage provides an order of magnitude speedup compared to most other approaches. We evaluate the proposed PatternNet subjectively by showing randomly selected visual patterns which are discovered by our method and quantitatively by performing image classification with the identified visual patterns and comparing our performance with the current state-of-the-art. We also directly evaluate the quality of the discovered visual patterns by leveraging the identified patterns as proposed objects in an image and compare with other relevant methods. Our proposed network and procedure, PatterNet, is able to outperform competing methods for the tasks described.
The mining of graphs in terms of their local substructure is a well-established methodology to analyze networks. It was hypothesized that motifs - subgraph patterns which appear significantly more often than expected at random - play a key role for t he ability of a system to perform its task. Yet the framework commonly used for motif-detection averages over the local environments of all nodes. Therefore, it remains unclear whether motifs are overrepresented in the whole system or only in certain regions. In this contribution, we overcome this limitation by mining node-specific triad patterns. For every vertex, the abundance of each triad pattern is considered only in triads it participates in. We investigate systems of various fields and find that motifs are distributed highly heterogeneously. In particular we focus on the feed-forward loop motif which has been alleged to play a key role in biological networks.
66 - Marco Winkler 2015
The detection of triadic subgraph motifs is a common methodology in complex-networks research. The procedure usually applied in order to detect motifs evaluates whether a certain subgraph pattern is overrepresented in a network as a whole. However, m otifs do not necessarily appear frequently in every region of a graph. For this reason, we recently introduced the framework of Node-Specific Pattern Mining (NoSPaM). This work is a manual for an implementation of NoSPaM which can be downloaded from www.mwinkler.eu.
Understanding images without explicit supervision has become an important problem in computer vision. In this paper, we address image captioning by generating language descriptions of scenes without learning from annotated pairs of images and their c aptions. The core component of our approach is a shared latent space that is structured by visual concepts. In this space, the two modalities should be indistinguishable. A language model is first trained to encode sentences into semantically structured embeddings. Image features that are translated into this embedding space can be decoded into descriptions through the same language model, similarly to sentence embeddings. This translation is learned from weakly paired images and text using a loss robust to noisy assignments and a conditional adversarial component. Our approach allows to exploit large text corpora outside the annotated distributions of image/caption data. Our experiments show that the proposed domain alignment learns a semantically meaningful representation which outperforms previous work.
95 - Zhe Xu , Jiangpeng Yan , Jie Luo 2020
Multimodal image registration (MIR) is a fundamental procedure in many image-guided therapies. Recently, unsupervised learning-based methods have demonstrated promising performance over accuracy and efficiency in deformable image registration. Howeve r, the estimated deformation fields of the existing methods fully rely on the to-be-registered image pair. It is difficult for the networks to be aware of the mismatched boundaries, resulting in unsatisfactory organ boundary alignment. In this paper, we propose a novel multimodal registration framework, which leverages the deformation fields estimated from both: (i) the original to-be-registered image pair, (ii) their corresponding gradient intensity maps, and adaptively fuses them with the proposed gated fusion module. With the help of auxiliary gradient-space guidance, the network can concentrate more on the spatial relationship of the organ boundary. Experimental results on two clinically acquired CT-MRI datasets demonstrate the effectiveness of our proposed approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا