ﻻ يوجد ملخص باللغة العربية
We consider the two-dimensional Blume-Capel model with zero chemical potential and small magnetic field evolving on a large but finite torus. We obtain sharp estimates for the transition time, we characterize the set of critical configurations, and we prove the metastable behavior of the dynamics as the temperature vanishes.
Using high-precision Monte-Carlo simulations based on a parallel version of the Wang-Landau algorithm and finite-size scaling techniques we study the effect of quenched disorder in the crystal-field coupling of the Blume-Capel model on the square lat
We analyze clustering and (local) recurrence of a standard Markov process model of spatial domain coarsening. The continuous time process, whose state space consists of assignments of +1 or -1 to each site in ${bf Z}^2$, is the zero-temperature limit
We study the Blume-Capel universality class in $d=frac{10}{3}-epsilon$ dimensions. The RG flow is extracted by looking at poles in fractional dimension of three loop diagrams using $overline{rm MS}$. The theory is the only nontrivial universality cla
We investigate by means of Monte Carlo simulations the dynamic phase transition of the two-dimensional kinetic Blume-Capel model under a periodically oscillating magnetic field in the presence of a quenched random crystal-field coupling. We analyze t
The critical properties of the spin-1 two-dimensional Blume-Capel model on directed and undi- rected random lattices with quenched connectivity disorder is studied through Monte Carlo simulations. The critical temperature, as well as the critical poi