ترغب بنشر مسار تعليمي؟ اضغط هنا

Trade-off Relations of Bell Violations among Pairwise Qubit Systems

99   0   0.0 ( 0 )
 نشر من قبل Shao-Ming Fei
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the nonlocality distributions among multiqubit systems based on the maximal violations of the Clauser-Horne-Shimony-Holt (CHSH) inequality of reduced pairwise qubit systems. We present a trade-off relation satisfied by these maximal violations, which gives rise to restrictions on the distribution of nonlocality among the subqubit systems. For a three-qubit system, it is impossible that all pairs of qubits violate the CHSH inequality, and once a pair of qubits violates the CHSH inequality maximally, the other two pairs of qubits must both obey the CHSH inequality. Detailed examples are given to illustrate the trade-off relations, and the trade-off relations are generalized to arbitrary multiqubit systems.

قيم البحث

اقرأ أيضاً

We study the trade-off relations given by the l_1-norm coherence of general multipartite states. Explicit trade-off inequalities are derived with lower bounds given by the coherence of either bipartite or multipartite reduced density matrices. In par ticular, for pure three-qubit states, it is explicitly shown that the trade-off inequality is lower bounded by the three tangle of quantum entanglement.
Quantum correlations resulting in violations of Bell inequalities have generated a lot of interest in quantum information science and fundamental physics. In this paper, we address some questions that become relevant in Bell-type tests involving syst ems with local dimension greater than 2. For CHSH-Bell tests within 2-dimensional subspaces of such high-dimensional systems, it has been suggested that experimental violation of Tsirelsons bound indicates that more than 2-dimensional entanglement was present. We explain that the overstepping of Tsirelsons bound is due to violation of fair sampling, and can in general be reproduced by a separable state, if fair sampling is violated. For a class of Bell-type inequalities generalized to d-dimensional systems, we then consider what level of violation is required to guarantee d-dimensional entanglement of the tested state, when fair sampling is satisfied. We find that this can be used as an experimentally feasible test of d-dimensional entanglement for up to quite high values of d.
The causal structure of any experiment implies restrictions on the observable correlations between measurement outcomes, which are different for experiments exploiting classical, quantum, or post-quantum resources. In the study of Bell nonlocality, t hese differences have been explored in great detail for more and more involved causal structures. Here, we go in the opposite direction and identify the simplest causal structure which exhibits a separation between classical, quantum, and post-quantum correlations. It arises in the so-called Instrumental scenario, known from classical causal models. We derive inequalities for this scenario and show that they are closely related to well-known Bell inequalities, such as the Clauser-Horne-Shimony-Holt inequality, which enables us to easily identify their classical, quantum, and post-quantum bounds as well as strategies violating the first two. The relations that we uncover imply that the quantum or post-quantum advantages witnessed by the violation of our Instrumental inequalities are not fundamentally different from those witnessed by the violations of standard inequalities in the usual Bell scenario. However, non-classical tests in the Instrumental scenario require fewer input choices than their Bell scenario counterpart, which may have potential implications for device-independent protocols.
96 - Xuena Zhu , Shaoming Fei 2014
We investigate the monogamy relations related to the concurrence and the entanglement of formation. General monogamy inequalities given by the {alpha}th power of concurrence and entanglement of formation are presented for N-qubit states. The monogamy relation for entanglement of assistance is also established. Based on these general monogamy relations, the residual entanglement of concurrence and entanglement of formation are studied. Some relations among the residual entanglement, entanglement of assistance, and three tangle are also presented.
Quantum reservoir engineering is a powerful framework for autonomous quantum state preparation and error correction. However, traditional approaches to reservoir engineering are hindered by unavoidable coherent leakage out of the target state, which imposes an inherent trade off between achievable steady-state state fidelity and stabilization rate. In this work we demonstrate a protocol that achieves trade off-free Bell state stabilization in a qutrit-qubit system realized on a circuit-QED platform. We accomplish this by creating a purely dissipative channel for population transfer into the target state, mediated by strong parametric interactions coupling the second-excited state of a superconducting transmon and the engineered bath resonator. Our scheme achieves a state preparation fidelity of 84% with a stabilization time constant of 339 ns, leading to the lowest error-time product reported in solid-state quantum information platforms to date.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا