ﻻ يوجد ملخص باللغة العربية
Modern visual analytic tools promote human-in-the-loop analysis but are limited in their ability to direct the user toward interesting and promising directions of study. This problem is especially acute when the analysis task is exploratory in nature, e.g., the discovery of potentially coordinated relationships in massive text datasets. Such tasks are very common in domains like intelligence analysis and security forensics where the goal is to uncover surprising coalitions bridging multiple types of relations. We introduce new maximum entropy models to discover surprising chains of relationships leveraging count data about entity occurrences in documents. These models are embedded in a visual analytic system called MERCER that treats relationship bundles as first class objects and directs the user toward promising lines of inquiry. We demonstrate how user input can judiciously direct analysis toward valid conclusions whereas a purely algorithmic approach could be led astray. Experimental results on both synthetic and real datasets from the intelligence community are presented.
The fundamental goal of business data analysis is to improve business decisions using data. Business users such as sales, marketing, product, or operations managers often make decisions to achieve key performance indicator (KPI) goals such as increas
Motivated by robotic surveillance applications, this paper studies the novel problem of maximizing the return time entropy of a Markov chain, subject to a graph topology with travel times and stationary distribution. The return time entropy is the we
We introduce a Maximum Entropy model able to capture the statistics of melodies in music. The model can be used to generate new melodies that emulate the style of the musical corpus which was used to train it. Instead of using the $n-$body interactio
Based on Jaynes maximum entropy principle, exponential random graphs provide a family of principled models that allow the prediction of network properties as constrained by empirical data (observables). However, their use is often hindered by the deg
Inspired by human visual attention, we introduce a Maximum Entropy Deep Inverse Reinforcement Learning (MEDIRL) framework for modeling the visual attention allocation of drivers in imminent rear-end collisions. MEDIRL is composed of visual, driving,