ﻻ يوجد ملخص باللغة العربية
An arbitrary $mtimes n$ Boolean matrix $M$ can be decomposed {em exactly} as $M =Ucirc V$, where $U$ (resp. $V$) is an $mtimes k$ (resp. $ktimes n$) Boolean matrix and $circ$ denotes the Boolean matrix multiplication operator. We first prove an exact formula for the Boolean matrix $J$ such that $M =Mcirc J^T$ holds, where $J$ is maximal in the sense that if any 0 element in $J$ is changed to a 1 then this equality no longer holds. Since minimizing $k$ is NP-hard, we propose two heuristic algorithms for finding suboptimal but good decomposition. We measure the performance (in minimizing $k$) of our algorithms on several real datasets in comparison with other representative heuristic algorithms for Boolean matrix decomposition (BMD). The results on some popular benchmark datasets demonstrate that one of our proposed algorithms performs as well or better on most of them. Our algorithms have a number of other advantages: They are based on exact mathematical formula, which can be interpreted intuitively. They can be used for approximation as well with competitive coverage. Last but not least, they also run very fast. Due to interpretability issues in data mining, we impose the condition, called the column use condition, that the columns of the factor matrix $U$ must form a subset of the columns of $M$.
We show that Boolean matrix multiplication, computed as a sum of products of column vectors with row vectors, is essentially the same as Warshalls algorithm for computing the transitive closure matrix of a graph from its adjacency matrix. Warshalls
It has been proved that almost all $n$-bit Boolean functions have exact classical query complexity $n$. However, the situation seemed to be very different when we deal with exact quantum query complexity. In this paper, we prove that almost all $n$-b
The subject of this textbook is the analysis of Boolean functions. Roughly speaking, this refers to studying Boolean functions $f : {0,1}^n to {0,1}$ via their Fourier expansion and other analytic means. Boolean functions are perhaps the most basic o
For a function $gcolon{0,1}^mto{0,1}$, a function $fcolon {0,1}^nto{0,1}$ is called a $g$-polymorphism if their actions commute: $f(g(mathsf{row}_1(Z)),ldots,g(mathsf{row}_n(Z))) = g(f(mathsf{col}_1(Z)),ldots,f(mathsf{col}_m(Z)))$ for all $Zin{0,1}^{
Boolean network models have gained popularity in computational systems biology over the last dozen years. Many of these networks use canalizing Boolean functions, which has led to increased interest in the study of these functions. The canalizing dep