ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct Band Gaps in Group IV-VI Monolayer Materials: Binary Counterparts of Phosphorene

343   0   0.0 ( 0 )
 نشر من قبل C Kamal
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform systematic investigation on the geometric, energetic and electronic properties of group IV-VI binary monolayers (XY), which are the counterparts of phosphorene, by employing density functional theory based electronic structure calculations. For this purpose, we choose the binary systems XY consisting of equal numbers of group IV (X = C, Si, Ge, Sn) and group VI elements (Y = O, S, Se, Te) in three geometrical configurations, the puckered, buckled and planar structures. The results of binding energy calculations show that all the binary systems studied are energetically stable. It is observed that, the puckered structure, similar to that of phosphorene, is the energetically most stable geometric configuration. Our results of electronic band structure predict that puckered SiO and CSe are direct band semiconductors with gaps of 1.449 and 0.905 eV, respectively. Band structure of CSe closely resembles that of phosphorene. Remaining group IV-VI binary monolayers in the puckered configuration and all the buckled monolayers are also semiconductors, but with indirect band gaps. Importantly, we find that the difference between indirect and direct band gaps is very small for many puckered monolayers. Thus, there is a possibility of making these systems undergo transition from indirect to direct band gap semiconducting state by a suitable external influence. Indeed, we show in the present work that seven binary monolayers namely SnS, SiSe, GeSe, SnSe, SiTe, GeTe and SnTe become direct band gap semiconductors when they are subjected to a small mechanical strain (<= 3 %). This makes nine out of sixteen binary monolayers studied in the present work direct band gap semiconductors. Thus, there is a possibility of utilizing these binary counterparts of phosphorene in future light-emitting diodes and solar cells.



قيم البحث

اقرأ أيضاً

Recently, phosphorene electronic and optoelectronic prototype devices have been fabricated with various metal electrodes. We systematically explore for the first time the contact properties of monolayer (ML) phosphorene with a series of commonly used metals (Al, Ag. Cu, Au, Cr, Ni, Ti, and Pd) via both ab initio electronic structure calculations and more reliable quantum transport simulations. Strong interactions are found between all the checked metals, with the energy band structure of ML phosphorene destroyed. In terms of the quantum transport simulations, ML phosphorene forms a n-type Schottky contact with Au, Cu, Cr, Al, and Ag electrodes, with electron Schottky barrier heights (SBHs) of 0.30, 0.34, 0.37, 0.51, and 0.52 eV, respectively, and p-type Schottky contact with Ti, Ni, and Pd electrodes, with hole SBHs of 0.30, 0.26, and 0.16 eV, respectively. These results are in good agreement with available experimental data. Our findings not only provide an insight into the ML phosphorene-metal interfaces but also help in ML phosphorene based device design.
The family of group IV-VI monochalcogenides has an atomically puckered layered structure, and their atomic bond configuration suggests the possibility for the realization of various polymorphs. Here, we report the synthesis of the first hexagonal pol ymorph from the family of group IV-VI monochalcogenides, which is conventionally orthorhombic. Recently predicted four-atomic-thick hexagonal GeSe, so-called {gamma}-GeSe, is synthesized and clearly identified by complementary structural characterizations, including elemental analysis, electron diffraction, high-resolution transmission electron microscopy imaging, and polarized Raman spectroscopy. The electrical and optical measurements indicate that synthesized {gamma}-GeSe exhibits high electrical conductivity of 3x10^5 S/m, which is comparable to those of other two-dimensional layered semimetallic crystals. Moreover, {gamma}-GeSe can be directly grown on h-BN substrates, demonstrating a bottom-up approach for constructing vertical van der Waals heterostructures incorporating {gamma}-GeSe. The newly identified crystal symmetry of {gamma}-GeSe warrants further studies on various physical properties of {gamma}-GeSe.
Moire superlattices of van der Waals heterostructures provide a powerful new way to engineer the electronic structures of two-dimensional (2D) materials. Many novel quantum phenomena have emerged in different moire heterostructures, such as correlate d insulators, superconductors, and Chern insulators in graphene systems and moire excitons in transition metal dichalcogenide (TMDC) systems. Twisted phosphorene offers another attractive system to explore moire physics because phosphorene features an anisotropic rectangular lattice, different from the isotropic hexagonal lattice in graphene and TMDC. Here we report emerging anisotropic moire optical transitions in twisted monolayer/bilayer phosphorene. The optical resonances in phosphorene moire superlattice depend sensitively on the twist angle between the monolayer and bilayer. Surprisingly, even for a twist angle as large as 19{deg} the moire heterostructure exhibits optical resonances completely different from those in the constituent monolayer and bilayer phosphorene. The new moire optical resonances exhibit strong linear polarization, with the principal axis lying close to but different from the optical axis of bilayer phosphorene. Our ab initio calculations reveal that the {Gamma}-point direct bandgap and the rectangular lattice of phosphorene, unlike the K-point bandgap of hexagonal lattice in graphene and TMDC, give rise to the remarkably strong moire physics in large-twist-angle phosphorene heterostructures. Our results highlight the exciting opportunities to explore moire physics in phosphorene and other van der Waals heterostructures with different lattice configurations.
280 - Shijun Zhao , Wei Kang 2014
The capacity and stability of constituent electrodes determine the performance of Li-ion batteries. In this study, density functional theory is employed to explore the potential application of recently synthesized two dimensional phosphorene as elect rode materials. Our results show that Li atoms can bind strongly with phosphorene monolayer and double layer with significant electron transfer. Besides, the structure of phosphorene is not much influenced by lithiation and the volume change is only 0.2%. A semiconducting to metallic transition is observed after lithiation. The diffusion barrier is calculated to 0.76 and 0.72 eV on monolayer and double layer phosphorene. The theoretical specific capacity of phosphorene monolayer is 432.79 mAh/g, which is larger than other commercial anodes materials. Our findings show that the high capacity, low open circuit voltage, small volume change and electrical conductivity of phosphorene make it a good candidate as electrode material.
223 - J. Ribeiro-Soares 2014
Group theory analysis for two-dimensional elemental systems related to phosphorene is presented, including (i) graphene, silicene, germanene and stanene, (ii) dependence on the number of layers and (iii) two stacking arrangements. Departing from the most symmetric $D_{6h}^{1}$ graphene space group, the structures are found to have a group-subgroup relation, and analysis of the irreducible representations of their lattice vibrations makes it possible to distinguish between the different allotropes. The analysis can be used to study the effect of strain, to understand structural phase transitions, to characterize the number of layers, crystallographic orientation and nonlinear phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا