ترغب بنشر مسار تعليمي؟ اضغط هنا

Cooperative spontaneous emission induced by smaller metal nanoparticles

57   0   0.0 ( 0 )
 نشر من قبل Murugesan Venkatapathi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study showing cooperative behavior of light emitting quantum dots at room temperature, with large increases in radiative decay rates and efficiencies, in the presence of small gold nanoparticles (1.5 - 4 nm radii) in low fractions. This is a size-regime of metal particles where the expected effect on emission from independent emitters is vain non-radiative loss. But the addition of such metal particles in low fractions induces a strong evolution of the super-radiant modes of emission among quantum dots and aids their survival of thermal fluctuations; exhibiting a phase transition. While an increase of size of metal particles results in an increase in local thermal fluctuations to revert to the behavior of apparently independent emitters. Our theoretical evaluations of their possible collective modes of emission in the presence of metal nanoparticles predict such experimental observations. Two different types of self-assembled nanoscale structures containing quantum dots were experimentally studied. This included the effect of the fractions and size of metal particles on the collective modes of emission in each type of structure; each type of structure had samples of different nominal sizes (and emission energies) of dots to establish generality. First, quantum dots collected in cylindrical cavities surrounded by randomly located gold particles were experimentally studied in large ensembles using polymer templates. The other type of nanostructure was a colloidal monolayer of quantum dots closely packed along with small gold nanoparticles. A cross-over between collective and independent regimes is observed based on the size of metal particles, and also at larger number fractions in the closely packed structure. Time-resolved photoluminescence measurements were also used to confirm this increase in the quantum efficiency and radiative decay rates of the dots.



قيم البحث

اقرأ أيضاً

Experimental results of direct measurement of resonant monochromatic terahertz emission optically excited in InGaAs transistor channels are presented. The emission is attributed to two-dimensional plasma waves excited by photogeneration of electron-h ole pairs in the channel at the frequency $f_0$ of the beating of two cw-laser sources. The presence of resonances for the radiation emission in the range of $f_0pm 10$ GHz (with $f_0$ from 0.3 up to 0.5 THz) detected by a Si-bolometer is found. Numerical results support that such a high quality of the emission resonances can be explained by the approach of an instability in the transistor channel.
Recent experiments have provided evidence that one-dimensional (1D) topological superconductivity can be realized experimentally by placing transition metal atoms that form a ferromagnetic chain on a superconducting substrate. We address some propert ies of this type of systems by using a Slater-Koster tight-binding model. We predict that topological superconductivity is nearly universal when ferromagnetic transition metal chains form straight lines on superconducting substrates and that it is possible for more complex chain structures. The proximity induced superconducting gap is $sim Delta E_{so} / J$ where $Delta$ is the $s$-wave pair-potential on the chain, $E_{so}$ is the spin-orbit splitting energy induced in the normal chain state bands by hybridization with the superconducting substrate, and $J$ is the exchange-splitting of the ferromagnetic chain $d$-bands. Because of the topological character of the 1D superconducting state, Majorana end modes appear within the gaps of finite length chains. We find, in agreement with experiment, that when the chain and substrate orbitals are strongly hybridized, Majorana end modes are substantially reduced in amplitude when separated from the chain end by less than the coherence length defined by the $p$-wave superconducting gap. We conclude that Pb is a particularly favorable substrate material for ferromagnetic chain topological superconductivity because it provides both strong $s-$wave pairing and strong Rashba spin-orbit coupling, but that there is an opportunity to optimize properties by varying the atomic composition and structure of the chain. Finally, we note that in the absence of disorder a new chain magnetic symmetry, one that is also present in the crystalline topological insulators, can stabilize multiple Majorana modes at the end of a single chain.
We discuss a self-consistent scheme for treating the optical response of large, hybrid networks of semiconducting quantum dots (SQDs) and plasmonic metallic nanoparticles (MNPs). Our method is efficient and scalable and becomes exact in the limiting case of weakly interacting SQDs. The self-consistent equations obtained for the steady state are analogous to the von Neumann equations of motion for the density matrix of a SQD placed in an effective electric field computed within the discrete dipole approximation. Illustrative applications of the theory to square and honeycomb SQD, MNP, and hybrid SDQ-MNP lattices as well as SQD-MNP dimers are presented. Our results demonstrate that hybrid SQD-MNP lattices can provide flexible platforms for light manipulation with tunable resonant characteristics.
A new electromagnetic plasma mode has been discovered in the hybrid system formed by a highly conductive gate strip placed in proximity to the two-dimensional electron system. The new plasmon mode propagates along the gate strip with no potential nod es present in transverse direction. Its unique spectrum combines characteristic features of both gated and ungated 2D plasmons. The new plasma excitation has been found to exhibit anomalously strong interaction with light.
We computationally study the effect of uniaxial strain in modulating the spontaneous emission of photons in silicon nanowires. Our main finding is that a one to two orders of magnitude change in spontaneous emission time occurs due to two distinct me chanisms: (A) Change in wave function symmetry, where within the direct bandgap regime, strain changes the symmetry of wave functions, which in turn leads to a large change of optical dipole matrix element. (B) Direct to indirect bandgap transition which makes the spontaneous photon emission to be of a slow second order process mediated by phonons. This feature uniquely occurs in silicon nanowires while in bulk silicon there is no change of optical properties under any reasonable amount of strain. These results promise new applications of silicon nanowires as optoelectronic devices including a mechanism for lasing. Our results are verifiable using existing experimental techniques of applying strain to nanowires.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا