ﻻ يوجد ملخص باللغة العربية
Typically, in the dynamical theory of extremal events, the function that gauges the intensity of a phenomenon is assumed to be convex and maximal, or singular, at a single, or at most a finite collection of points in phase--space. In this paper we generalize this situation to fractal landscapes, i.e. intensity functions characterized by an uncountable set of singularities, located on a Cantor set. This reveals the dynamical r^ole of classical quantities like the Minkowski dimension and content, whose definition we extend to account for singular continuous invariant measures. We also introduce the concept of extremely rare event, quantified by non--standard Minkowski constants and we study its consequences to extreme value statistics. Limit laws are derived from formal calculations and are verified by numerical experiments.
In this paper we prove the existence of Extreme Value Laws for dynamical systems perturbed by instrument-like-error, also called observational noise. An orbit perturbed with observational noise mimics the behavior of an instrumentally recorded time s
We study non-stationary stochastic processes arising from sequential dynamical systems built on maps with a neutral fixed points and prove the existence of Extreme Value Laws for such processes. We use an approach developed in cite{FFV16}, where we g
We examine the diffraction properties of lattice dynamical systems of algebraic origin. It is well-known that diverse dynamical properties occur within this class. These include different orders of mixing (or higher-order correlations), the presence
We establish quantitative results for the statistical be-ha-vi-our of emph{infinite systems}. We consider two kinds of infinite system: i) a conservative dynamical system $(f,X,mu)$ preserving a $sigma$-finite measure $mu$ such that $mu(X)=infty$; ii
We give a criterion for exponential dynamical localization in expectation (EDL) for ergodic families of operators acting on $ell^2(Z^d)$. As applications, we prove EDL for a class of quasi-periodic long-range operators on $ell^2(Z^d)$.