ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra-low-noise room-temperature quantum memory for polarization qubits

85   0   0.0 ( 0 )
 نشر من قبل Eden Figueroa
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we show an ultra-low noise regime of operation in a simple quantum memory in warm Rb atomic vapor. By modelling the quantum dynamics of four-level room temperature atoms, we achieve fidelities >90% for single-photon level polarization qubits, clearly surpassing any classical strategy exploiting the non-unitary memory efficiency. This is the first time such important threshold has been crossed with a room temperature device. Additionally we also show novel experimental techniques capable of producing fidelities close to unity. Our results demonstrate the potential of simple, resource-moderate experimental room temperature quantum devices.



قيم البحث

اقرأ أيضاً

An optical quantum memory is a stationary device that is capable of storing and recreating photonic qubits with a higher fidelity than any classical device. Thus far, these two requirements have been fulfilled in systems based on cold atoms and cryog enically cooled crystals. Here, we report a room-temperature quantum memory capable of storing arbitrary polarization qubits with a signal-to-background ratio higher than 1 and an average fidelity clearly surpassing the classical limit for weak laser pulses containing 1.6 photons on average. Our results prove that a common vapor cell can reach the low background noise levels necessary for quantum memory operation, and propels atomic-vapor systems to a level of quantum functionality akin to other quantum information processing architectures.
Just as classical information systems require buffers and memory, the same is true for quantum information systems. The potential that optical quantum information processing holds for revolutionising computation and communication is therefore driving significant research into developing optical quantum memory. A practical optical quantum memory must be able to store and recall quantum states on demand with high efficiency and low noise. Ideally, the platform for the memory would also be simple and inexpensive. Here, we present a complete tomographic reconstruction of quantum states that have been stored in the ground states of rubidium in a vapour cell operating at around 80$^o$C. Without conditional measurements, we show recall fidelity up to 98% for coherent pulses containing around one photon. In order to unambiguously verify that our memory beats the quantum no-cloning limit we employ state independent verification using conditional variance and signal transfer coefficients.
Future quantum photonic networks require coherent optical memories for synchronizing quantum sources and gates of probabilistic nature. We demonstrate a fast ladder memory (FLAME) mapping the optical field onto the superposition between electronic or bitals of rubidium vapor. Employing a ladder level-system of orbital transitions with nearly degenerate frequencies simultaneously enables high bandwidth, low noise, and long memory lifetime. We store and retrieve 1.7-ns-long pulses, containing 0.5 photons on average, and observe short-time external efficiency of 25%, memory lifetime (${1/e}$) of 86 ns, and below ${10^{-4}}$ added noise photons. Consequently, coupling this memory to a probabilistic source would enhance the on-demand photon generation probability by a factor of 12, the highest number yet reported for a noise-free, room-temperature memory. This paves the way towards the controlled production of large quantum states of light from probabilistic photon sources.
648 - G. W. Lin , X. B. Zou , X. M. Lin 2013
We propose a scheme to implement a heralded quantum memory for single-photon polarization qubits with a single atom trapped in an optical cavity. In this scheme, an injected photon only exchanges quantum state with the atom, so that the heralded stor age can be achieved by detecting the output photon. We also demonstrate that the scheme can be used for realizing the heralded quantum state transfer, exchange and entanglement distribution between distant nodes. The ability to detect whether the operation has succeeded or not is crucial for practical application.
First generation quantum repeater networks require independent quantum memories capable of storing and retrieving indistinguishable photons to perform quantum-interference-mediated high-repetition entanglement swapping operations. The ability to perf orm these coherent operations at room temperature is of prime importance in order to realize large scalable quantum networks. Here we address these significant challenges by observing Hong-Ou-Mandel (HOM) interference between indistinguishable photons carrying polarization qubits retrieved from two independent room-temperature quantum memories. Our elementary quantum network configuration includes: (i) two independent sources generating polarization-encoded qubits; (ii) two atomic-vapor dual-rail quantum memories; and (iii) a HOM interference node. We obtained interference visibilities after quantum memory retrieval of $rm boldsymbol{V=(41.9pm2.0)%}$ for few-photon level inputs and $rm boldsymbol{V=(25.9pm2.5)%}$ for single-photon level inputs. Our prototype network lays the groundwork for future large-scale memory-assisted quantum cryptography and distributed quantum networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا