ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant biquadratic interaction induced magnetic anisotropy in the iron-based superconductor AxFe2-ySe2

63   0   0.0 ( 0 )
 نشر من قبل Xie Yun
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The emergence of the electron-pocket only iron-based superconductor AxFe2-ySe2 (A = alkali metal) challenges the Fermi-surface nesting picture established in iron-pnictides. It was widely believed that magnetism is correlated with the superconductivity in AxFe2-ySe2. Unfortunately, the highly anisotropic exchange parameters and the disagreement between theoretical calculations and experimental results triggered a fierce debate on the nature of magnetism in AxFe2-ySe2. Here we find that the strong magnetic anisotropy is from the anisotropic biquadratic interaction. In order to accurately obtain the magnetic interaction parameters, we propose a universal method, which does not need including other high energy configurations as did in conventional energy mapping method. We show that our model successfully captures the magnetic interactions in AxFe2-ySe2 and correctly predicts the spin wave spectrum, in quantitative agreement with the experimental observation. These results suggest that the local moment picture, including the biquadratic term, can describe accurately the magnetic properties and spin excitations in AxFe2-ySe2, which sheds new light on the future study of the high-Tc iron-based superconductors.



قيم البحث

اقرأ أيضاً

Strong electron interactions in solids increase effective mass, and shrink the electronic bands [1]. One of the most unique and robust experimental facts about iron-based superconductors [2-4] is the renormalization of the conduction band by factor o f 3 near the Fermi level [5-9]. Obviously related to superconductivity, this unusual behaviour remains unexplained. Here, by studying the momentum-resolved spectrum of the whole valence band in a representative material, we show that this phenomenon originates from electronic interaction on a much larger energy scale. We observe an abrupt depletion of the spectral weight in the middle of the Fe $3d$ band, which is accompanied by a drastic increase of the scattering rate. Remarkably, all spectral anomalies including the low-energy renormalization can be explained by coupling to excitations, strongly peaked at about 0.5 eV. Such high-energy interaction distinguishes all unconventional superconductors from common metals.
We use polarized inelastic neutron scattering to study the spin-excitations anisotropy in the bilayer iron-based superconductor CaKFe$_4$As$_4$ ($T_c$ = 35 K). In the superconducting state, both odd and even $L-$modulations of spin resonance have bee n observed in our previous unpolarized neutron scattering experiments (T. Xie {it et al.} Phys. Rev. Lett. {bf 120}, 267003 (2018)). Here we find that the high-energy even mode ($sim 18$ meV) is isotropic in spin space, but the low-energy odd modes consist of a $c-$axis polarized mode around 9 meV along with another partially overlapped in-plane mode around 12 meV. We argue that such spin anisotropy is induced by the spin-orbit coupling in the spin-vortex-type fluctuations of this unique compound. The spin anisotropy is strongly affected by the superconductivity, where it is weak below 6 meV in the normal state and then transferred to higher energy and further enhanced in the odd mode of spin resonance below $T_c$.
Neutron diffraction and small angle scattering experiments have been carried out on the double-isotopic polycrystalline sample (7Li0.82Fe0.18OD)FeSe. Profile refinements of the diffraction data establish the composition and reveal an essentially sing le phase material with lattice parameters of a= 3.7827 {AA} and c= 9.1277 {AA} at 4 K, in the ferromagnetic-superconductor regime, with a bulk superconducting transition of TC = 18 K. Small angle neutron scattering (SANS) measurements in zero applied field reveal the onset of ferromagnetic order below TF ~ 12.5 K, with a wave vector and temperature dependence consistent with an inhomogeneous ferromagnet of spontaneous vortices or domains in a mixed state. No oscillatory long range ordered magnetic state is observed. Field dependent measurements establish a separate component of magnetic scattering from the vortex lattice, which occurs at the expected wave vector. The temperature dependence of the vortex scattering does not indicate any contribution from the ferromagnetism, consistent with diffraction data that indicate that the ordered ferromagnetic moment is quite small.
Braiding Majorana zero modes is essential for fault-tolerant topological quantum computing. Iron-based superconductors with nontrivial band topology have recently emerged as a surprisingly promising platform for creating distinct Majorana zero modes in magnetic vortices in a single material and at relatively high temperatures. The magnetic field-induced Abrikosov vortex lattice makes it difficult to braid a set of Majorana zero modes or to study the coupling of a Majorana doublet due to overlapping wave functions. Here we report the observation of the proposed quantum anomalous vortex with integer quantized vortex core states and the Majorana zero mode induced by magnetic Fe adatoms deposited on the surface. We observe its hybridization with a nearby field-induced Majorana vortex in iron-based superconductor FeTe0.55Se0.45. We also observe vortex-free Yu-Shiba-Rusinov bound states at the Fe adatoms with a weaker coupling to the substrate, and discover a reversible transition between Yu-Shiba-Rusinov states and Majorana zero mode by manipulating the exchange coupling strength. The dual origin of the Majorana zero modes, from magnetic adatoms and external magnetic field, provides a new single-material platform for studying their interactions and braiding in superconductors bearing topological band structures.
We present results of LDA calculations (band structure, densities of states, Fermi surfaces) for possible iron based superconductor BaFe2Se3 (Ba123) in normal (paramagnetic) phase. Results are briefly compared with similar data on prototype BaFe2As2 and (K,Cs)Fe2Se2 superconductors. Without doping this system is antiferromagnetic with T_N^{exp}~250K and rather complicated magnetic structure. Neutron diffraction experiments indicated the possibility of two possible spin structures (antiferromagnetically ordered plaquettes or zigzags), indistinguishable by neutron scattering. Using LSDA calculated exchange parameters we estimate Neel temperatures for both spin structures within the molecular field approximation and show tau_1 (plaquettes) spin configuration to be more favorable than tau_2 (zigzags).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا