ﻻ يوجد ملخص باللغة العربية
We experimentally investigate and utilize electrothermal feedback in a microwave nanobolometer based on a normal-metal ($mbox{Au}_{x}mbox{Pd}_{1-x}$) nanowire with proximity-induced superconductivity. The feedback couples the temperature and the electrical degrees of freedom in the nanowire, which both absorbs the incoming microwave radiation, and transduces the temperature change into a radio-frequency electrical signal. We tune the feedback in situ and access both positive and negative feedback regimes with rich nonlinear dynamics. In particular, strong positive feedback leads to the emergence of two metastable electron temperature states in the millikelvin range. We use these states for efficient threshold detection of coherent 8.4 GHz microwave pulses containing approximately 200 photons on average, corresponding to $1.1 mbox{ zJ} approx 7.0 mbox{ meV}$ of energy.
We introduce a microwave bolometer aimed at high-quantum-efficiency detection of wave packet energy within the framework of circuit quantum electrodynamics, the ultimate goal being single microwave photon detection. We measure the differential therma
We study two microscopic models of topological insulators in contact with an $s$-wave superconductor. In the first model the superconductor and the topological insulator are tunnel coupled via a layer of scalar and of randomly oriented spin impuritie
High density superconductor-semiconductor-superconductor junctions have a small induced superconducting gap due to the quasiparticle trajectories with a large momentum parallel to the junction having a very long flight time. Because a large induced g
We perform extensive analysis of graphene Josephson junctions embedded in microwave circuits. By comparing a diffusive junction at 15 mK with a ballistic one at 15 mK and 1 K, we are able to reconstruct the current-phase relation.
We study Josephson junctions (JJs) in which the region between the two superconductors is a multichannel system with Rashba spin-orbit coupling (SOC) where a barrier or a quantum point contact (QPC) is present. These systems might present unconventio