ﻻ يوجد ملخص باللغة العربية
QCD with imaginary chemical potential is free of the sign problem and exhibits a rich phase structure constraining the phase diagram at real chemical potential. We simulate the critical endpoint of the Roberge-Weiss (RW) transition at imaginary chemical potential for $N_text{f}=2$ QCD on $N_tau=6$ lattices with standard Wilson fermions. As found on coarser lattices, the RW endpoint is a triple point connecting the deconfinement/chiral transitions in the heavy/light quark mass regions and changes to a second-order endpoint for intermediate masses. These regimes are separated by two tricritical values of the quark mass, which we determine by extracting the critical exponent $ u$ from a systematic finite size scaling analysis of the Binder cumulant of the imaginary part of the Polyakov loop. We are able to explain a previously observed finite size effect afflicting the scaling of the Binder cumulant in the regime of three-phase coexistence. Compared to $N_tau=4$ lattices, the tricritical masses are shifted towards smaller values. Exploratory results on $N_tau=8$ as well as comparison with staggered simulations suggest that significantly finer lattices are needed before a continuum extrapolation becomes feasible.
The QCD phase diagram at imaginary chemical potential exhibits a rich structure and studying it can constrain the phase diagram at real values of the chemical potential. Moreover, at imaginary chemical potential standard numerical techniques based on
In the absence of a genuine solution to the sign problem, lattice studies at imaginary quark chemical potential are an important tool to constrain the QCD phase diagram. We calculate the values of the tricritical quark masses in the Roberge-Weiss pla
The ${rm SU}(3)$ pure gauge theory exhibits a first-order thermal deconfinement transition due to spontaneous breaking of its global $Z_3$ center symmetry. When heavy dynamical quarks are added, this symmetry is broken explicitly and the transition w
QCD is investigated at finite temperature using Wilson fermions in the fixed scale approach. A 2+1 flavor stout and clover improved action is used at four lattice spacings allowing for control over discretization errors. The light quark masses in thi
We present updated results on the nucleon electromagnetic form factors and axial coupling calculated using CLS ensembles with $N_mathrm{f}=2+1$ dynamical flavours of Wilson fermions. The measurements are performed on large, fine lattices with a pseud